Accelerating the Multilevel Fast Multipole Algorithm with the Sparse-Approximate-Inverse (SAI) Preconditioning

With the help of the multilevel fast multipole algorithm, integral-equation methods can be used to solve real-life electromagnetics problems both accurately and efficiently. Increasing problem dimensions, on the other hand, necessitate effective parallel preconditioners with low setup costs. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2009-01, Vol.31 (3), p.1968-1984
Hauptverfasser: Malas, Tahr, Gürel, Levent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1984
container_issue 3
container_start_page 1968
container_title SIAM journal on scientific computing
container_volume 31
creator Malas, Tahr
Gürel, Levent
description With the help of the multilevel fast multipole algorithm, integral-equation methods can be used to solve real-life electromagnetics problems both accurately and efficiently. Increasing problem dimensions, on the other hand, necessitate effective parallel preconditioners with low setup costs. In this paper, we consider sparse approximate inverses generated from the sparse near-field part of the dense coefficient matrix. In particular, we analyze pattern selection strategies that can make efficient use of the block structure of the near-field matrix, and we propose a load-balancing method to obtain high scalability during the setup. We also present some implementation details, which reduce the computational cost of the setup phase. In conclusion, for the open-surface problems that are modeled by the electric-field integral equation, we have been able to solve ill-conditioned linear systems involving millions of unknowns with moderate computational requirements. For closed-surface problems that can be modeled by the combined-field integral equation, we reduce the solution times significantly compared to the commonly used block-diagonal preconditioner.
doi_str_mv 10.1137/070711098
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038236862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038236862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-fef9a1a845244422e8016782908274080b42e6ad2cd971acce1063b2f6cc138c3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqUw8A8ipnYI-CuxM0YVhUpFIBXmyHUvbSo3DrZT4N_jUsTA4rOtR3fvcwhdE3xLCBN3WGBBCC7kCRrEkqWCFOL0cM95KqnIztGF91uMSc4LOkBtqTUYcCo07ToJG0ieehMaA3swyVT5cHx31kBSmrV1Tdjsko94_sCLTjkPadl1zn42OxUgnbV7iH_JaFHOxsmLA23bVRMa28YJl-isVsbD1W8dorfp_evkMZ0_P8wm5TzVNOMhraEuFFGSZ5RzTinImFdIWuCowLHES04hVyuqV4UgKipEP7akda41YVKzIRod-8Zc7z34UO0aH0WNasH2viKYScpymdOI3vxDt7Z3bUxXFZRgzpmQERofIe2s9w7qqnNR133FTtVh8dXf4tk3SUx0aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921044378</pqid></control><display><type>article</type><title>Accelerating the Multilevel Fast Multipole Algorithm with the Sparse-Approximate-Inverse (SAI) Preconditioning</title><source>SIAM Journals Online</source><creator>Malas, Tahr ; Gürel, Levent</creator><creatorcontrib>Malas, Tahr ; Gürel, Levent</creatorcontrib><description>With the help of the multilevel fast multipole algorithm, integral-equation methods can be used to solve real-life electromagnetics problems both accurately and efficiently. Increasing problem dimensions, on the other hand, necessitate effective parallel preconditioners with low setup costs. In this paper, we consider sparse approximate inverses generated from the sparse near-field part of the dense coefficient matrix. In particular, we analyze pattern selection strategies that can make efficient use of the block structure of the near-field matrix, and we propose a load-balancing method to obtain high scalability during the setup. We also present some implementation details, which reduce the computational cost of the setup phase. In conclusion, for the open-surface problems that are modeled by the electric-field integral equation, we have been able to solve ill-conditioned linear systems involving millions of unknowns with moderate computational requirements. For closed-surface problems that can be modeled by the combined-field integral equation, we reduce the solution times significantly compared to the commonly used block-diagonal preconditioner.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/070711098</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Blocking ; Computation ; Computational efficiency ; Integral equations ; Linear systems ; Load ; Methods ; Multilevel ; Multipoles ; Sparsity</subject><ispartof>SIAM journal on scientific computing, 2009-01, Vol.31 (3), p.1968-1984</ispartof><rights>[Copyright] © 2009 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-fef9a1a845244422e8016782908274080b42e6ad2cd971acce1063b2f6cc138c3</citedby><cites>FETCH-LOGICAL-c254t-fef9a1a845244422e8016782908274080b42e6ad2cd971acce1063b2f6cc138c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Malas, Tahr</creatorcontrib><creatorcontrib>Gürel, Levent</creatorcontrib><title>Accelerating the Multilevel Fast Multipole Algorithm with the Sparse-Approximate-Inverse (SAI) Preconditioning</title><title>SIAM journal on scientific computing</title><description>With the help of the multilevel fast multipole algorithm, integral-equation methods can be used to solve real-life electromagnetics problems both accurately and efficiently. Increasing problem dimensions, on the other hand, necessitate effective parallel preconditioners with low setup costs. In this paper, we consider sparse approximate inverses generated from the sparse near-field part of the dense coefficient matrix. In particular, we analyze pattern selection strategies that can make efficient use of the block structure of the near-field matrix, and we propose a load-balancing method to obtain high scalability during the setup. We also present some implementation details, which reduce the computational cost of the setup phase. In conclusion, for the open-surface problems that are modeled by the electric-field integral equation, we have been able to solve ill-conditioned linear systems involving millions of unknowns with moderate computational requirements. For closed-surface problems that can be modeled by the combined-field integral equation, we reduce the solution times significantly compared to the commonly used block-diagonal preconditioner.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Blocking</subject><subject>Computation</subject><subject>Computational efficiency</subject><subject>Integral equations</subject><subject>Linear systems</subject><subject>Load</subject><subject>Methods</subject><subject>Multilevel</subject><subject>Multipoles</subject><subject>Sparsity</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkD1PwzAQhi0EEqUw8A8ipnYI-CuxM0YVhUpFIBXmyHUvbSo3DrZT4N_jUsTA4rOtR3fvcwhdE3xLCBN3WGBBCC7kCRrEkqWCFOL0cM95KqnIztGF91uMSc4LOkBtqTUYcCo07ToJG0ieehMaA3swyVT5cHx31kBSmrV1Tdjsko94_sCLTjkPadl1zn42OxUgnbV7iH_JaFHOxsmLA23bVRMa28YJl-isVsbD1W8dorfp_evkMZ0_P8wm5TzVNOMhraEuFFGSZ5RzTinImFdIWuCowLHES04hVyuqV4UgKipEP7akda41YVKzIRod-8Zc7z34UO0aH0WNasH2viKYScpymdOI3vxDt7Z3bUxXFZRgzpmQERofIe2s9w7qqnNR133FTtVh8dXf4tk3SUx0aw</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Malas, Tahr</creator><creator>Gürel, Levent</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>Accelerating the Multilevel Fast Multipole Algorithm with the Sparse-Approximate-Inverse (SAI) Preconditioning</title><author>Malas, Tahr ; Gürel, Levent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-fef9a1a845244422e8016782908274080b42e6ad2cd971acce1063b2f6cc138c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Blocking</topic><topic>Computation</topic><topic>Computational efficiency</topic><topic>Integral equations</topic><topic>Linear systems</topic><topic>Load</topic><topic>Methods</topic><topic>Multilevel</topic><topic>Multipoles</topic><topic>Sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malas, Tahr</creatorcontrib><creatorcontrib>Gürel, Levent</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malas, Tahr</au><au>Gürel, Levent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating the Multilevel Fast Multipole Algorithm with the Sparse-Approximate-Inverse (SAI) Preconditioning</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>31</volume><issue>3</issue><spage>1968</spage><epage>1984</epage><pages>1968-1984</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>With the help of the multilevel fast multipole algorithm, integral-equation methods can be used to solve real-life electromagnetics problems both accurately and efficiently. Increasing problem dimensions, on the other hand, necessitate effective parallel preconditioners with low setup costs. In this paper, we consider sparse approximate inverses generated from the sparse near-field part of the dense coefficient matrix. In particular, we analyze pattern selection strategies that can make efficient use of the block structure of the near-field matrix, and we propose a load-balancing method to obtain high scalability during the setup. We also present some implementation details, which reduce the computational cost of the setup phase. In conclusion, for the open-surface problems that are modeled by the electric-field integral equation, we have been able to solve ill-conditioned linear systems involving millions of unknowns with moderate computational requirements. For closed-surface problems that can be modeled by the combined-field integral equation, we reduce the solution times significantly compared to the commonly used block-diagonal preconditioner.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/070711098</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2009-01, Vol.31 (3), p.1968-1984
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_miscellaneous_1038236862
source SIAM Journals Online
subjects Algorithms
Approximation
Blocking
Computation
Computational efficiency
Integral equations
Linear systems
Load
Methods
Multilevel
Multipoles
Sparsity
title Accelerating the Multilevel Fast Multipole Algorithm with the Sparse-Approximate-Inverse (SAI) Preconditioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20the%20Multilevel%20Fast%20Multipole%20Algorithm%20with%20the%20Sparse-Approximate-Inverse%20(SAI)%20Preconditioning&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Malas,%20Tahr&rft.date=2009-01-01&rft.volume=31&rft.issue=3&rft.spage=1968&rft.epage=1984&rft.pages=1968-1984&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/070711098&rft_dat=%3Cproquest_cross%3E1038236862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921044378&rft_id=info:pmid/&rfr_iscdi=true