A search model for topological insulators with high-throughput robustness descriptors

Topological insulators (TI) are becoming one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. To fully integrate TI materials in electronic devices, high-quality epitaxial single-crystalline phases with su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Materials 2012-05, Vol.11 (7), p.614-619
Hauptverfasser: Yang, Kesong, Setyawan, Wahyu, Wang, Shidong, Buongiorno Nardelli, Marco, Curtarolo, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 619
container_issue 7
container_start_page 614
container_title Nature Materials
container_volume 11
creator Yang, Kesong
Setyawan, Wahyu
Wang, Shidong
Buongiorno Nardelli, Marco
Curtarolo, Stefano
description Topological insulators (TI) are becoming one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. To fully integrate TI materials in electronic devices, high-quality epitaxial single-crystalline phases with sufficiently large bulk bandgaps are necessary. Current efforts have relied mostly on costly and time-consuming trial-and-error procedures. Here we show that by defining a reliable and accessible descriptor , which represents the topological robustness or feasibility of the candidate, and by searching the quantum materials repository aflowlib.org , we have automatically discovered 28 TIs (some of them already known) in five different symmetry families. These include peculiar ternary halides, Cs{Sn,Pb,Ge}{Cl,Br,I} 3 , which could have been hardly anticipated without high-throughput means. Our search model, by relying on the significance of repositories in materials development, opens new avenues for the discovery of more TIs in different and unexplored classes of systems. Topological insulators exhibit intriguing electronic properties that originate from protected metallic states on their surface. Experimental studies so far are based on a limited number of materials. A high-throughput approach now shows how to search for topological insulators in a variety of unexplored classes of materials.
doi_str_mv 10.1038/nmat3332
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038235566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1021982257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-1b6f38fb3ccbad3fcea6f33b72a786f872ecf23c3c3d5360b3e20f08a272d49a3</originalsourceid><addsrcrecordid>eNqN0ctKxDAUBuAginfwCSToRhfVXNomsxzEGwhudF3SNJlG2qbmpIhvb8YZL7iSLBKSj_-QcxA6ouSCEi4vh15FzjnbQLs0F2WWlyXZXJ8pZWwH7QG8EMJoUZTbaIexQlJO8130PMdgVNAt7n1jOmx9wNGPvvMLp1WH3QBTp6IPgN9cbHHrFm0W2-CnRTtOEQdfTxAHA4AbAzq4cWkP0JZVHZjD9b6Pnm-un67usofH2_ur-UOmc1LEjNal5dLWXOtaNdxqo9IFrwVTQpZWCma0ZVyn1RS8JDU3jFgiFROsyWeK76OTVa6H6CrQLhrdaj8MRseKklzkRCZ0tkJj8K-TgVj1DrTpOjUYP0G17CDjqTHlPyijM5m6JxI9_UNf_BSG9NulmklRiHz2E6iDBwjGVmNwvQrvCX0Wrr5Gl-jxOnCqe9N8w69ZJXC-ApCehoUJvyv-CfsA1_eiUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1029875749</pqid></control><display><type>article</type><title>A search model for topological insulators with high-throughput robustness descriptors</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Yang, Kesong ; Setyawan, Wahyu ; Wang, Shidong ; Buongiorno Nardelli, Marco ; Curtarolo, Stefano</creator><creatorcontrib>Yang, Kesong ; Setyawan, Wahyu ; Wang, Shidong ; Buongiorno Nardelli, Marco ; Curtarolo, Stefano ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Topological insulators (TI) are becoming one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. To fully integrate TI materials in electronic devices, high-quality epitaxial single-crystalline phases with sufficiently large bulk bandgaps are necessary. Current efforts have relied mostly on costly and time-consuming trial-and-error procedures. Here we show that by defining a reliable and accessible descriptor , which represents the topological robustness or feasibility of the candidate, and by searching the quantum materials repository aflowlib.org , we have automatically discovered 28 TIs (some of them already known) in five different symmetry families. These include peculiar ternary halides, Cs{Sn,Pb,Ge}{Cl,Br,I} 3 , which could have been hardly anticipated without high-throughput means. Our search model, by relying on the significance of repositories in materials development, opens new avenues for the discovery of more TIs in different and unexplored classes of systems. Topological insulators exhibit intriguing electronic properties that originate from protected metallic states on their surface. Experimental studies so far are based on a limited number of materials. A high-throughput approach now shows how to search for topological insulators in a variety of unexplored classes of materials.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3332</identifier><identifier>PMID: 22581314</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystal structure ; Electronics ; Feasibility ; HALIDES ; Insulators ; MATERIALS ; MATERIALS SCIENCE ; Mathematical models ; Nanotechnology ; Optical and Electronic Materials ; Phases ; POTENTIALS ; QUANTUM COMPUTERS ; Repositories ; Robustness ; Searching ; SYMMETRY ; topological insulators, electronic structures database, aflow aconvasp, high throughput materials design ; Topology ; USES</subject><ispartof>Nature Materials, 2012-05, Vol.11 (7), p.614-619</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-1b6f38fb3ccbad3fcea6f33b72a786f872ecf23c3c3d5360b3e20f08a272d49a3</citedby><cites>FETCH-LOGICAL-c405t-1b6f38fb3ccbad3fcea6f33b72a786f872ecf23c3c3d5360b3e20f08a272d49a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22581314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1047408$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Kesong</creatorcontrib><creatorcontrib>Setyawan, Wahyu</creatorcontrib><creatorcontrib>Wang, Shidong</creatorcontrib><creatorcontrib>Buongiorno Nardelli, Marco</creatorcontrib><creatorcontrib>Curtarolo, Stefano</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>A search model for topological insulators with high-throughput robustness descriptors</title><title>Nature Materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Topological insulators (TI) are becoming one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. To fully integrate TI materials in electronic devices, high-quality epitaxial single-crystalline phases with sufficiently large bulk bandgaps are necessary. Current efforts have relied mostly on costly and time-consuming trial-and-error procedures. Here we show that by defining a reliable and accessible descriptor , which represents the topological robustness or feasibility of the candidate, and by searching the quantum materials repository aflowlib.org , we have automatically discovered 28 TIs (some of them already known) in five different symmetry families. These include peculiar ternary halides, Cs{Sn,Pb,Ge}{Cl,Br,I} 3 , which could have been hardly anticipated without high-throughput means. Our search model, by relying on the significance of repositories in materials development, opens new avenues for the discovery of more TIs in different and unexplored classes of systems. Topological insulators exhibit intriguing electronic properties that originate from protected metallic states on their surface. Experimental studies so far are based on a limited number of materials. A high-throughput approach now shows how to search for topological insulators in a variety of unexplored classes of materials.</description><subject>639/301/119/995</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystal structure</subject><subject>Electronics</subject><subject>Feasibility</subject><subject>HALIDES</subject><subject>Insulators</subject><subject>MATERIALS</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Phases</subject><subject>POTENTIALS</subject><subject>QUANTUM COMPUTERS</subject><subject>Repositories</subject><subject>Robustness</subject><subject>Searching</subject><subject>SYMMETRY</subject><subject>topological insulators, electronic structures database, aflow aconvasp, high throughput materials design</subject><subject>Topology</subject><subject>USES</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0ctKxDAUBuAginfwCSToRhfVXNomsxzEGwhudF3SNJlG2qbmpIhvb8YZL7iSLBKSj_-QcxA6ouSCEi4vh15FzjnbQLs0F2WWlyXZXJ8pZWwH7QG8EMJoUZTbaIexQlJO8130PMdgVNAt7n1jOmx9wNGPvvMLp1WH3QBTp6IPgN9cbHHrFm0W2-CnRTtOEQdfTxAHA4AbAzq4cWkP0JZVHZjD9b6Pnm-un67usofH2_ur-UOmc1LEjNal5dLWXOtaNdxqo9IFrwVTQpZWCma0ZVyn1RS8JDU3jFgiFROsyWeK76OTVa6H6CrQLhrdaj8MRseKklzkRCZ0tkJj8K-TgVj1DrTpOjUYP0G17CDjqTHlPyijM5m6JxI9_UNf_BSG9NulmklRiHz2E6iDBwjGVmNwvQrvCX0Wrr5Gl-jxOnCqe9N8w69ZJXC-ApCehoUJvyv-CfsA1_eiUA</recordid><startdate>20120513</startdate><enddate>20120513</enddate><creator>Yang, Kesong</creator><creator>Setyawan, Wahyu</creator><creator>Wang, Shidong</creator><creator>Buongiorno Nardelli, Marco</creator><creator>Curtarolo, Stefano</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20120513</creationdate><title>A search model for topological insulators with high-throughput robustness descriptors</title><author>Yang, Kesong ; Setyawan, Wahyu ; Wang, Shidong ; Buongiorno Nardelli, Marco ; Curtarolo, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-1b6f38fb3ccbad3fcea6f33b72a786f872ecf23c3c3d5360b3e20f08a272d49a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/301/119/995</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystal structure</topic><topic>Electronics</topic><topic>Feasibility</topic><topic>HALIDES</topic><topic>Insulators</topic><topic>MATERIALS</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Phases</topic><topic>POTENTIALS</topic><topic>QUANTUM COMPUTERS</topic><topic>Repositories</topic><topic>Robustness</topic><topic>Searching</topic><topic>SYMMETRY</topic><topic>topological insulators, electronic structures database, aflow aconvasp, high throughput materials design</topic><topic>Topology</topic><topic>USES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Kesong</creatorcontrib><creatorcontrib>Setyawan, Wahyu</creatorcontrib><creatorcontrib>Wang, Shidong</creatorcontrib><creatorcontrib>Buongiorno Nardelli, Marco</creatorcontrib><creatorcontrib>Curtarolo, Stefano</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nature Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Kesong</au><au>Setyawan, Wahyu</au><au>Wang, Shidong</au><au>Buongiorno Nardelli, Marco</au><au>Curtarolo, Stefano</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A search model for topological insulators with high-throughput robustness descriptors</atitle><jtitle>Nature Materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2012-05-13</date><risdate>2012</risdate><volume>11</volume><issue>7</issue><spage>614</spage><epage>619</epage><pages>614-619</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Topological insulators (TI) are becoming one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. To fully integrate TI materials in electronic devices, high-quality epitaxial single-crystalline phases with sufficiently large bulk bandgaps are necessary. Current efforts have relied mostly on costly and time-consuming trial-and-error procedures. Here we show that by defining a reliable and accessible descriptor , which represents the topological robustness or feasibility of the candidate, and by searching the quantum materials repository aflowlib.org , we have automatically discovered 28 TIs (some of them already known) in five different symmetry families. These include peculiar ternary halides, Cs{Sn,Pb,Ge}{Cl,Br,I} 3 , which could have been hardly anticipated without high-throughput means. Our search model, by relying on the significance of repositories in materials development, opens new avenues for the discovery of more TIs in different and unexplored classes of systems. Topological insulators exhibit intriguing electronic properties that originate from protected metallic states on their surface. Experimental studies so far are based on a limited number of materials. A high-throughput approach now shows how to search for topological insulators in a variety of unexplored classes of materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22581314</pmid><doi>10.1038/nmat3332</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature Materials, 2012-05, Vol.11 (7), p.614-619
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1038235566
source Nature; Alma/SFX Local Collection
subjects 639/301/119/995
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Crystal structure
Electronics
Feasibility
HALIDES
Insulators
MATERIALS
MATERIALS SCIENCE
Mathematical models
Nanotechnology
Optical and Electronic Materials
Phases
POTENTIALS
QUANTUM COMPUTERS
Repositories
Robustness
Searching
SYMMETRY
topological insulators, electronic structures database, aflow aconvasp, high throughput materials design
Topology
USES
title A search model for topological insulators with high-throughput robustness descriptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20search%20model%20for%20topological%20insulators%20with%20high-throughput%20robustness%20descriptors&rft.jtitle=Nature%20Materials&rft.au=Yang,%20Kesong&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2012-05-13&rft.volume=11&rft.issue=7&rft.spage=614&rft.epage=619&rft.pages=614-619&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3332&rft_dat=%3Cproquest_osti_%3E1021982257%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1029875749&rft_id=info:pmid/22581314&rfr_iscdi=true