Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip
In the control of classical mechanical systems, feedback has been applied to the generation of desired nonlinear dynamics, e.g., in chaos control. However, how much this can be done is still an open problem in quantum mechanical systems. This paper presents a scheme of enhancing nonlinear quantum ef...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2012-08, Vol.57 (8), p.1997-2008 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2008 |
---|---|
container_issue | 8 |
container_start_page | 1997 |
container_title | IEEE transactions on automatic control |
container_volume | 57 |
creator | Zhang, Jing Wu, Re-Bing Liu, Yu-xi Li, Chun-Wen Tarn, Tzyh-Jong |
description | In the control of classical mechanical systems, feedback has been applied to the generation of desired nonlinear dynamics, e.g., in chaos control. However, how much this can be done is still an open problem in quantum mechanical systems. This paper presents a scheme of enhancing nonlinear quantum effects via the recently developed coherent feedback techniques, which can be shown to outperform the measurement-based quantum feedback scheme that can only generate pseudo-nonlinear quantum effects. Apart from the advantages of our method, an unsolved problem is that the decoherence rate is also increased by the quantum amplifier, which may be solved by introducing, e.g., an integral device or an nonlinear quantum amplifier. Such a proposal is demonstrated via two application examples in quantum optics on chip. In the first example, we show that nonlinear Kerr effect can be generated and amplified to be comparable with the linear effect in a transmission line resonator (TLR). In the second example, we show that by tuning the gains of the quantum amplifiers in a TLR coherent feedback network, the resulting nonlinear effects can generate and manipulate non-Gaussian "light" (microwave field) which exhibits fully quantum sub-Poisson photoncount statistics and photon antibunching phenomenon. The scheme opens up broad applications in engineering nonlinear quantum optics on chip. Particularly, in this study, the concept of feedback nonlinearization which is very useful for quantum feedback control systems is introduced. This is in contrast to the feedback linearization concept used in classical nonlinear feedback control systems. |
doi_str_mv | 10.1109/TAC.2012.2195871 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038235442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6189054</ieee_id><sourcerecordid>2721765861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-c3b20d53bd3da6041190dbdbff2b4727116861713ac8259bbb1ff93506bb78273</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoOKd3wUvAi5fNvPxo0-MoToXhECYeS9KmLLNrapIe_O_NmHrw8r48-Hwfjw9C10DmAKS43yzKOSVA5xQKIXM4QRMQQs6ooOwUTQgBOSuozM7RRQi7tGacwwStX0fVx3GPS7c13vQRv7i-s71RHi-NabSqP_C7jVu8GIbO1ipa1wccHf4trodo64Bdj8utHS7RWau6YK5-corelg-b8mm2Wj8-l4vVrGaUxzQ1JY1gumGNyggHKEijG922VPOc5gCZzCAHpmpJRaG1hrYtmCCZ1rmkOZuiu-PdwbvP0YRY7W2oTdep3rgxVECYpExwThN6-w_dudH36btEUUmACMYSRY5U7V0I3rTV4O1e-a8EVQfDVTJcHQxXP4ZT5eZYscaYPzwDWRDB2TdYg3Vf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1028010533</pqid></control><display><type>article</type><title>Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jing ; Wu, Re-Bing ; Liu, Yu-xi ; Li, Chun-Wen ; Tarn, Tzyh-Jong</creator><creatorcontrib>Zhang, Jing ; Wu, Re-Bing ; Liu, Yu-xi ; Li, Chun-Wen ; Tarn, Tzyh-Jong</creatorcontrib><description>In the control of classical mechanical systems, feedback has been applied to the generation of desired nonlinear dynamics, e.g., in chaos control. However, how much this can be done is still an open problem in quantum mechanical systems. This paper presents a scheme of enhancing nonlinear quantum effects via the recently developed coherent feedback techniques, which can be shown to outperform the measurement-based quantum feedback scheme that can only generate pseudo-nonlinear quantum effects. Apart from the advantages of our method, an unsolved problem is that the decoherence rate is also increased by the quantum amplifier, which may be solved by introducing, e.g., an integral device or an nonlinear quantum amplifier. Such a proposal is demonstrated via two application examples in quantum optics on chip. In the first example, we show that nonlinear Kerr effect can be generated and amplified to be comparable with the linear effect in a transmission line resonator (TLR). In the second example, we show that by tuning the gains of the quantum amplifiers in a TLR coherent feedback network, the resulting nonlinear effects can generate and manipulate non-Gaussian "light" (microwave field) which exhibits fully quantum sub-Poisson photoncount statistics and photon antibunching phenomenon. The scheme opens up broad applications in engineering nonlinear quantum optics on chip. Particularly, in this study, the concept of feedback nonlinearization which is very useful for quantum feedback control systems is introduced. This is in contrast to the feedback linearization concept used in classical nonlinear feedback control systems.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2012.2195871</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cavity resonators ; Chips ; Coherence ; Control systems ; Control theory ; Feedback ; Feedback control ; Feedback control systems ; Feedback nonlinearization ; Kerr effect ; Nonlinear optics ; nonlinear quantum optics ; Nonlinearity ; on-chip quantum optics ; Optical feedback ; Quantum amplifiers ; quantum coherent feedback control ; quantum control ; Quantum optics ; Studies ; System-on-a-chip</subject><ispartof>IEEE transactions on automatic control, 2012-08, Vol.57 (8), p.1997-2008</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-c3b20d53bd3da6041190dbdbff2b4727116861713ac8259bbb1ff93506bb78273</citedby><cites>FETCH-LOGICAL-c324t-c3b20d53bd3da6041190dbdbff2b4727116861713ac8259bbb1ff93506bb78273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6189054$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6189054$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Wu, Re-Bing</creatorcontrib><creatorcontrib>Liu, Yu-xi</creatorcontrib><creatorcontrib>Li, Chun-Wen</creatorcontrib><creatorcontrib>Tarn, Tzyh-Jong</creatorcontrib><title>Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In the control of classical mechanical systems, feedback has been applied to the generation of desired nonlinear dynamics, e.g., in chaos control. However, how much this can be done is still an open problem in quantum mechanical systems. This paper presents a scheme of enhancing nonlinear quantum effects via the recently developed coherent feedback techniques, which can be shown to outperform the measurement-based quantum feedback scheme that can only generate pseudo-nonlinear quantum effects. Apart from the advantages of our method, an unsolved problem is that the decoherence rate is also increased by the quantum amplifier, which may be solved by introducing, e.g., an integral device or an nonlinear quantum amplifier. Such a proposal is demonstrated via two application examples in quantum optics on chip. In the first example, we show that nonlinear Kerr effect can be generated and amplified to be comparable with the linear effect in a transmission line resonator (TLR). In the second example, we show that by tuning the gains of the quantum amplifiers in a TLR coherent feedback network, the resulting nonlinear effects can generate and manipulate non-Gaussian "light" (microwave field) which exhibits fully quantum sub-Poisson photoncount statistics and photon antibunching phenomenon. The scheme opens up broad applications in engineering nonlinear quantum optics on chip. Particularly, in this study, the concept of feedback nonlinearization which is very useful for quantum feedback control systems is introduced. This is in contrast to the feedback linearization concept used in classical nonlinear feedback control systems.</description><subject>Cavity resonators</subject><subject>Chips</subject><subject>Coherence</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Feedback nonlinearization</subject><subject>Kerr effect</subject><subject>Nonlinear optics</subject><subject>nonlinear quantum optics</subject><subject>Nonlinearity</subject><subject>on-chip quantum optics</subject><subject>Optical feedback</subject><subject>Quantum amplifiers</subject><subject>quantum coherent feedback control</subject><subject>quantum control</subject><subject>Quantum optics</subject><subject>Studies</subject><subject>System-on-a-chip</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4MoOKd3wUvAi5fNvPxo0-MoToXhECYeS9KmLLNrapIe_O_NmHrw8r48-Hwfjw9C10DmAKS43yzKOSVA5xQKIXM4QRMQQs6ooOwUTQgBOSuozM7RRQi7tGacwwStX0fVx3GPS7c13vQRv7i-s71RHi-NabSqP_C7jVu8GIbO1ipa1wccHf4trodo64Bdj8utHS7RWau6YK5-corelg-b8mm2Wj8-l4vVrGaUxzQ1JY1gumGNyggHKEijG922VPOc5gCZzCAHpmpJRaG1hrYtmCCZ1rmkOZuiu-PdwbvP0YRY7W2oTdep3rgxVECYpExwThN6-w_dudH36btEUUmACMYSRY5U7V0I3rTV4O1e-a8EVQfDVTJcHQxXP4ZT5eZYscaYPzwDWRDB2TdYg3Vf</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Zhang, Jing</creator><creator>Wu, Re-Bing</creator><creator>Liu, Yu-xi</creator><creator>Li, Chun-Wen</creator><creator>Tarn, Tzyh-Jong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20120801</creationdate><title>Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip</title><author>Zhang, Jing ; Wu, Re-Bing ; Liu, Yu-xi ; Li, Chun-Wen ; Tarn, Tzyh-Jong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-c3b20d53bd3da6041190dbdbff2b4727116861713ac8259bbb1ff93506bb78273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cavity resonators</topic><topic>Chips</topic><topic>Coherence</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Feedback nonlinearization</topic><topic>Kerr effect</topic><topic>Nonlinear optics</topic><topic>nonlinear quantum optics</topic><topic>Nonlinearity</topic><topic>on-chip quantum optics</topic><topic>Optical feedback</topic><topic>Quantum amplifiers</topic><topic>quantum coherent feedback control</topic><topic>quantum control</topic><topic>Quantum optics</topic><topic>Studies</topic><topic>System-on-a-chip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Wu, Re-Bing</creatorcontrib><creatorcontrib>Liu, Yu-xi</creatorcontrib><creatorcontrib>Li, Chun-Wen</creatorcontrib><creatorcontrib>Tarn, Tzyh-Jong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jing</au><au>Wu, Re-Bing</au><au>Liu, Yu-xi</au><au>Li, Chun-Wen</au><au>Tarn, Tzyh-Jong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>57</volume><issue>8</issue><spage>1997</spage><epage>2008</epage><pages>1997-2008</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In the control of classical mechanical systems, feedback has been applied to the generation of desired nonlinear dynamics, e.g., in chaos control. However, how much this can be done is still an open problem in quantum mechanical systems. This paper presents a scheme of enhancing nonlinear quantum effects via the recently developed coherent feedback techniques, which can be shown to outperform the measurement-based quantum feedback scheme that can only generate pseudo-nonlinear quantum effects. Apart from the advantages of our method, an unsolved problem is that the decoherence rate is also increased by the quantum amplifier, which may be solved by introducing, e.g., an integral device or an nonlinear quantum amplifier. Such a proposal is demonstrated via two application examples in quantum optics on chip. In the first example, we show that nonlinear Kerr effect can be generated and amplified to be comparable with the linear effect in a transmission line resonator (TLR). In the second example, we show that by tuning the gains of the quantum amplifiers in a TLR coherent feedback network, the resulting nonlinear effects can generate and manipulate non-Gaussian "light" (microwave field) which exhibits fully quantum sub-Poisson photoncount statistics and photon antibunching phenomenon. The scheme opens up broad applications in engineering nonlinear quantum optics on chip. Particularly, in this study, the concept of feedback nonlinearization which is very useful for quantum feedback control systems is introduced. This is in contrast to the feedback linearization concept used in classical nonlinear feedback control systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2012.2195871</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2012-08, Vol.57 (8), p.1997-2008 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038235442 |
source | IEEE Electronic Library (IEL) |
subjects | Cavity resonators Chips Coherence Control systems Control theory Feedback Feedback control Feedback control systems Feedback nonlinearization Kerr effect Nonlinear optics nonlinear quantum optics Nonlinearity on-chip quantum optics Optical feedback Quantum amplifiers quantum coherent feedback control quantum control Quantum optics Studies System-on-a-chip |
title | Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Coherent%20Nonlinear%20Feedback%20With%20Applications%20to%20Quantum%20Optics%20on%20Chip&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Zhang,%20Jing&rft.date=2012-08-01&rft.volume=57&rft.issue=8&rft.spage=1997&rft.epage=2008&rft.pages=1997-2008&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2012.2195871&rft_dat=%3Cproquest_RIE%3E2721765861%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1028010533&rft_id=info:pmid/&rft_ieee_id=6189054&rfr_iscdi=true |