Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip

In the control of classical mechanical systems, feedback has been applied to the generation of desired nonlinear dynamics, e.g., in chaos control. However, how much this can be done is still an open problem in quantum mechanical systems. This paper presents a scheme of enhancing nonlinear quantum ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2012-08, Vol.57 (8), p.1997-2008
Hauptverfasser: Zhang, Jing, Wu, Re-Bing, Liu, Yu-xi, Li, Chun-Wen, Tarn, Tzyh-Jong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2008
container_issue 8
container_start_page 1997
container_title IEEE transactions on automatic control
container_volume 57
creator Zhang, Jing
Wu, Re-Bing
Liu, Yu-xi
Li, Chun-Wen
Tarn, Tzyh-Jong
description In the control of classical mechanical systems, feedback has been applied to the generation of desired nonlinear dynamics, e.g., in chaos control. However, how much this can be done is still an open problem in quantum mechanical systems. This paper presents a scheme of enhancing nonlinear quantum effects via the recently developed coherent feedback techniques, which can be shown to outperform the measurement-based quantum feedback scheme that can only generate pseudo-nonlinear quantum effects. Apart from the advantages of our method, an unsolved problem is that the decoherence rate is also increased by the quantum amplifier, which may be solved by introducing, e.g., an integral device or an nonlinear quantum amplifier. Such a proposal is demonstrated via two application examples in quantum optics on chip. In the first example, we show that nonlinear Kerr effect can be generated and amplified to be comparable with the linear effect in a transmission line resonator (TLR). In the second example, we show that by tuning the gains of the quantum amplifiers in a TLR coherent feedback network, the resulting nonlinear effects can generate and manipulate non-Gaussian "light" (microwave field) which exhibits fully quantum sub-Poisson photoncount statistics and photon antibunching phenomenon. The scheme opens up broad applications in engineering nonlinear quantum optics on chip. Particularly, in this study, the concept of feedback nonlinearization which is very useful for quantum feedback control systems is introduced. This is in contrast to the feedback linearization concept used in classical nonlinear feedback control systems.
doi_str_mv 10.1109/TAC.2012.2195871
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038235442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6189054</ieee_id><sourcerecordid>2721765861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-c3b20d53bd3da6041190dbdbff2b4727116861713ac8259bbb1ff93506bb78273</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoOKd3wUvAi5fNvPxo0-MoToXhECYeS9KmLLNrapIe_O_NmHrw8r48-Hwfjw9C10DmAKS43yzKOSVA5xQKIXM4QRMQQs6ooOwUTQgBOSuozM7RRQi7tGacwwStX0fVx3GPS7c13vQRv7i-s71RHi-NabSqP_C7jVu8GIbO1ipa1wccHf4trodo64Bdj8utHS7RWau6YK5-corelg-b8mm2Wj8-l4vVrGaUxzQ1JY1gumGNyggHKEijG922VPOc5gCZzCAHpmpJRaG1hrYtmCCZ1rmkOZuiu-PdwbvP0YRY7W2oTdep3rgxVECYpExwThN6-w_dudH36btEUUmACMYSRY5U7V0I3rTV4O1e-a8EVQfDVTJcHQxXP4ZT5eZYscaYPzwDWRDB2TdYg3Vf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1028010533</pqid></control><display><type>article</type><title>Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jing ; Wu, Re-Bing ; Liu, Yu-xi ; Li, Chun-Wen ; Tarn, Tzyh-Jong</creator><creatorcontrib>Zhang, Jing ; Wu, Re-Bing ; Liu, Yu-xi ; Li, Chun-Wen ; Tarn, Tzyh-Jong</creatorcontrib><description>In the control of classical mechanical systems, feedback has been applied to the generation of desired nonlinear dynamics, e.g., in chaos control. However, how much this can be done is still an open problem in quantum mechanical systems. This paper presents a scheme of enhancing nonlinear quantum effects via the recently developed coherent feedback techniques, which can be shown to outperform the measurement-based quantum feedback scheme that can only generate pseudo-nonlinear quantum effects. Apart from the advantages of our method, an unsolved problem is that the decoherence rate is also increased by the quantum amplifier, which may be solved by introducing, e.g., an integral device or an nonlinear quantum amplifier. Such a proposal is demonstrated via two application examples in quantum optics on chip. In the first example, we show that nonlinear Kerr effect can be generated and amplified to be comparable with the linear effect in a transmission line resonator (TLR). In the second example, we show that by tuning the gains of the quantum amplifiers in a TLR coherent feedback network, the resulting nonlinear effects can generate and manipulate non-Gaussian "light" (microwave field) which exhibits fully quantum sub-Poisson photoncount statistics and photon antibunching phenomenon. The scheme opens up broad applications in engineering nonlinear quantum optics on chip. Particularly, in this study, the concept of feedback nonlinearization which is very useful for quantum feedback control systems is introduced. This is in contrast to the feedback linearization concept used in classical nonlinear feedback control systems.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2012.2195871</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cavity resonators ; Chips ; Coherence ; Control systems ; Control theory ; Feedback ; Feedback control ; Feedback control systems ; Feedback nonlinearization ; Kerr effect ; Nonlinear optics ; nonlinear quantum optics ; Nonlinearity ; on-chip quantum optics ; Optical feedback ; Quantum amplifiers ; quantum coherent feedback control ; quantum control ; Quantum optics ; Studies ; System-on-a-chip</subject><ispartof>IEEE transactions on automatic control, 2012-08, Vol.57 (8), p.1997-2008</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-c3b20d53bd3da6041190dbdbff2b4727116861713ac8259bbb1ff93506bb78273</citedby><cites>FETCH-LOGICAL-c324t-c3b20d53bd3da6041190dbdbff2b4727116861713ac8259bbb1ff93506bb78273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6189054$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6189054$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Wu, Re-Bing</creatorcontrib><creatorcontrib>Liu, Yu-xi</creatorcontrib><creatorcontrib>Li, Chun-Wen</creatorcontrib><creatorcontrib>Tarn, Tzyh-Jong</creatorcontrib><title>Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In the control of classical mechanical systems, feedback has been applied to the generation of desired nonlinear dynamics, e.g., in chaos control. However, how much this can be done is still an open problem in quantum mechanical systems. This paper presents a scheme of enhancing nonlinear quantum effects via the recently developed coherent feedback techniques, which can be shown to outperform the measurement-based quantum feedback scheme that can only generate pseudo-nonlinear quantum effects. Apart from the advantages of our method, an unsolved problem is that the decoherence rate is also increased by the quantum amplifier, which may be solved by introducing, e.g., an integral device or an nonlinear quantum amplifier. Such a proposal is demonstrated via two application examples in quantum optics on chip. In the first example, we show that nonlinear Kerr effect can be generated and amplified to be comparable with the linear effect in a transmission line resonator (TLR). In the second example, we show that by tuning the gains of the quantum amplifiers in a TLR coherent feedback network, the resulting nonlinear effects can generate and manipulate non-Gaussian "light" (microwave field) which exhibits fully quantum sub-Poisson photoncount statistics and photon antibunching phenomenon. The scheme opens up broad applications in engineering nonlinear quantum optics on chip. Particularly, in this study, the concept of feedback nonlinearization which is very useful for quantum feedback control systems is introduced. This is in contrast to the feedback linearization concept used in classical nonlinear feedback control systems.</description><subject>Cavity resonators</subject><subject>Chips</subject><subject>Coherence</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Feedback nonlinearization</subject><subject>Kerr effect</subject><subject>Nonlinear optics</subject><subject>nonlinear quantum optics</subject><subject>Nonlinearity</subject><subject>on-chip quantum optics</subject><subject>Optical feedback</subject><subject>Quantum amplifiers</subject><subject>quantum coherent feedback control</subject><subject>quantum control</subject><subject>Quantum optics</subject><subject>Studies</subject><subject>System-on-a-chip</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4MoOKd3wUvAi5fNvPxo0-MoToXhECYeS9KmLLNrapIe_O_NmHrw8r48-Hwfjw9C10DmAKS43yzKOSVA5xQKIXM4QRMQQs6ooOwUTQgBOSuozM7RRQi7tGacwwStX0fVx3GPS7c13vQRv7i-s71RHi-NabSqP_C7jVu8GIbO1ipa1wccHf4trodo64Bdj8utHS7RWau6YK5-corelg-b8mm2Wj8-l4vVrGaUxzQ1JY1gumGNyggHKEijG922VPOc5gCZzCAHpmpJRaG1hrYtmCCZ1rmkOZuiu-PdwbvP0YRY7W2oTdep3rgxVECYpExwThN6-w_dudH36btEUUmACMYSRY5U7V0I3rTV4O1e-a8EVQfDVTJcHQxXP4ZT5eZYscaYPzwDWRDB2TdYg3Vf</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Zhang, Jing</creator><creator>Wu, Re-Bing</creator><creator>Liu, Yu-xi</creator><creator>Li, Chun-Wen</creator><creator>Tarn, Tzyh-Jong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20120801</creationdate><title>Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip</title><author>Zhang, Jing ; Wu, Re-Bing ; Liu, Yu-xi ; Li, Chun-Wen ; Tarn, Tzyh-Jong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-c3b20d53bd3da6041190dbdbff2b4727116861713ac8259bbb1ff93506bb78273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cavity resonators</topic><topic>Chips</topic><topic>Coherence</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Feedback nonlinearization</topic><topic>Kerr effect</topic><topic>Nonlinear optics</topic><topic>nonlinear quantum optics</topic><topic>Nonlinearity</topic><topic>on-chip quantum optics</topic><topic>Optical feedback</topic><topic>Quantum amplifiers</topic><topic>quantum coherent feedback control</topic><topic>quantum control</topic><topic>Quantum optics</topic><topic>Studies</topic><topic>System-on-a-chip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Wu, Re-Bing</creatorcontrib><creatorcontrib>Liu, Yu-xi</creatorcontrib><creatorcontrib>Li, Chun-Wen</creatorcontrib><creatorcontrib>Tarn, Tzyh-Jong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jing</au><au>Wu, Re-Bing</au><au>Liu, Yu-xi</au><au>Li, Chun-Wen</au><au>Tarn, Tzyh-Jong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>57</volume><issue>8</issue><spage>1997</spage><epage>2008</epage><pages>1997-2008</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In the control of classical mechanical systems, feedback has been applied to the generation of desired nonlinear dynamics, e.g., in chaos control. However, how much this can be done is still an open problem in quantum mechanical systems. This paper presents a scheme of enhancing nonlinear quantum effects via the recently developed coherent feedback techniques, which can be shown to outperform the measurement-based quantum feedback scheme that can only generate pseudo-nonlinear quantum effects. Apart from the advantages of our method, an unsolved problem is that the decoherence rate is also increased by the quantum amplifier, which may be solved by introducing, e.g., an integral device or an nonlinear quantum amplifier. Such a proposal is demonstrated via two application examples in quantum optics on chip. In the first example, we show that nonlinear Kerr effect can be generated and amplified to be comparable with the linear effect in a transmission line resonator (TLR). In the second example, we show that by tuning the gains of the quantum amplifiers in a TLR coherent feedback network, the resulting nonlinear effects can generate and manipulate non-Gaussian "light" (microwave field) which exhibits fully quantum sub-Poisson photoncount statistics and photon antibunching phenomenon. The scheme opens up broad applications in engineering nonlinear quantum optics on chip. Particularly, in this study, the concept of feedback nonlinearization which is very useful for quantum feedback control systems is introduced. This is in contrast to the feedback linearization concept used in classical nonlinear feedback control systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2012.2195871</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2012-08, Vol.57 (8), p.1997-2008
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_1038235442
source IEEE Electronic Library (IEL)
subjects Cavity resonators
Chips
Coherence
Control systems
Control theory
Feedback
Feedback control
Feedback control systems
Feedback nonlinearization
Kerr effect
Nonlinear optics
nonlinear quantum optics
Nonlinearity
on-chip quantum optics
Optical feedback
Quantum amplifiers
quantum coherent feedback control
quantum control
Quantum optics
Studies
System-on-a-chip
title Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Coherent%20Nonlinear%20Feedback%20With%20Applications%20to%20Quantum%20Optics%20on%20Chip&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Zhang,%20Jing&rft.date=2012-08-01&rft.volume=57&rft.issue=8&rft.spage=1997&rft.epage=2008&rft.pages=1997-2008&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2012.2195871&rft_dat=%3Cproquest_RIE%3E2721765861%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1028010533&rft_id=info:pmid/&rft_ieee_id=6189054&rfr_iscdi=true