Nanostructured Block-Random Copolymers with Tunable Magnetic Properties

It was recently shown that block copolymers (BCPs) produced room-temperature ferromagnetic materials (RTFMs) due to their nanoscopic ordering and the cylindrical phase yielded the highest coercivity. Here, a series of metal-containing block-random copolymers composed of an alkyl-functionalized homo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2012-09, Vol.134 (35), p.14534-14541
Hauptverfasser: Zha, Yongping, Thaker, Hitesh D, Maddikeri, Raghavendra R, Gido, Samuel P, Tuominen, Mark T, Tew, Gregory N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14541
container_issue 35
container_start_page 14534
container_title Journal of the American Chemical Society
container_volume 134
creator Zha, Yongping
Thaker, Hitesh D
Maddikeri, Raghavendra R
Gido, Samuel P
Tuominen, Mark T
Tew, Gregory N
description It was recently shown that block copolymers (BCPs) produced room-temperature ferromagnetic materials (RTFMs) due to their nanoscopic ordering and the cylindrical phase yielded the highest coercivity. Here, a series of metal-containing block-random copolymers composed of an alkyl-functionalized homo block (C16) and a random block of cobalt complex- (Co) and ferrocene-functionalized (Fe) units was synthesized via ring-opening metathesis polymerization. Taking advantage of the block-random architecture, the influence of dipolar interactions on the magnetic properties of these nanostructured BCP materials was studied by varying the molar ratio of the Co units to the Fe units, while maintaining the cylindrical phase-separated morphology. DC magnetic measurements, including magnetization versus field, zero-field-cooled, and field-cooled, as well as AC susceptibility measurements showed that the magnetic properties of the nanostructured BCP materials could be easily tuned by diluting the cobalt density with Fe units in the cylindrical domains. Decreasing the cobalt density weakened the dipolar interactions of the cobalt nanoparticles, leading to the transition from a room temperature ferromagnetic (RTF) to a superparamagnetic material. These results confirmed that dipolar interactions of the cobalt nanoparticles within the phase-separated domains were responsible for the RTF properties of the nanostructured BCP materials.
doi_str_mv 10.1021/ja305249b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038229121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038229121</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-5885d39e8b8f8f41dd1dc2baffdf508a6b2bfd7cac328c6399a656a2d262b4d53</originalsourceid><addsrcrecordid>eNpt0E1Lw0AQBuBFFFurB_-A5CLoIbo7m002R1u0CvUDqeewn5qaZONugvTfG2ntydMw8MwL8yJ0SvAVwUCuV4JiBkku99CYMMAxI5DuozHGGOKMp3SEjkJYDWsCnByiEQDPhstsjOZPonGh873qem90NK2c-oxfRaNdHc1c66p1bXyIvsvuI1r2jZCViR7Fe2O6UkUv3rXGd6UJx-jAiiqYk-2coLe72-XsPl48zx9mN4tYUMK6mHHONM0Nl9xymxCtiVYghbXaMsxFKkFanSmhKHCV0jwXKUsFaEhBJprRCbrY5LbeffUmdEVdBmWqSjTG9aEgmHKAnAAZ6OWGKu9C8MYWrS9r4dcDKn57K3a9DfZsG9vL2uid_CtqAOcbIFQoVq73zfDlP0E_8B50tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038229121</pqid></control><display><type>article</type><title>Nanostructured Block-Random Copolymers with Tunable Magnetic Properties</title><source>ACS Publications</source><creator>Zha, Yongping ; Thaker, Hitesh D ; Maddikeri, Raghavendra R ; Gido, Samuel P ; Tuominen, Mark T ; Tew, Gregory N</creator><creatorcontrib>Zha, Yongping ; Thaker, Hitesh D ; Maddikeri, Raghavendra R ; Gido, Samuel P ; Tuominen, Mark T ; Tew, Gregory N</creatorcontrib><description>It was recently shown that block copolymers (BCPs) produced room-temperature ferromagnetic materials (RTFMs) due to their nanoscopic ordering and the cylindrical phase yielded the highest coercivity. Here, a series of metal-containing block-random copolymers composed of an alkyl-functionalized homo block (C16) and a random block of cobalt complex- (Co) and ferrocene-functionalized (Fe) units was synthesized via ring-opening metathesis polymerization. Taking advantage of the block-random architecture, the influence of dipolar interactions on the magnetic properties of these nanostructured BCP materials was studied by varying the molar ratio of the Co units to the Fe units, while maintaining the cylindrical phase-separated morphology. DC magnetic measurements, including magnetization versus field, zero-field-cooled, and field-cooled, as well as AC susceptibility measurements showed that the magnetic properties of the nanostructured BCP materials could be easily tuned by diluting the cobalt density with Fe units in the cylindrical domains. Decreasing the cobalt density weakened the dipolar interactions of the cobalt nanoparticles, leading to the transition from a room temperature ferromagnetic (RTF) to a superparamagnetic material. These results confirmed that dipolar interactions of the cobalt nanoparticles within the phase-separated domains were responsible for the RTF properties of the nanostructured BCP materials.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja305249b</identifier><identifier>PMID: 22871027</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2012-09, Vol.134 (35), p.14534-14541</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-5885d39e8b8f8f41dd1dc2baffdf508a6b2bfd7cac328c6399a656a2d262b4d53</citedby><cites>FETCH-LOGICAL-a315t-5885d39e8b8f8f41dd1dc2baffdf508a6b2bfd7cac328c6399a656a2d262b4d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja305249b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja305249b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22871027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zha, Yongping</creatorcontrib><creatorcontrib>Thaker, Hitesh D</creatorcontrib><creatorcontrib>Maddikeri, Raghavendra R</creatorcontrib><creatorcontrib>Gido, Samuel P</creatorcontrib><creatorcontrib>Tuominen, Mark T</creatorcontrib><creatorcontrib>Tew, Gregory N</creatorcontrib><title>Nanostructured Block-Random Copolymers with Tunable Magnetic Properties</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>It was recently shown that block copolymers (BCPs) produced room-temperature ferromagnetic materials (RTFMs) due to their nanoscopic ordering and the cylindrical phase yielded the highest coercivity. Here, a series of metal-containing block-random copolymers composed of an alkyl-functionalized homo block (C16) and a random block of cobalt complex- (Co) and ferrocene-functionalized (Fe) units was synthesized via ring-opening metathesis polymerization. Taking advantage of the block-random architecture, the influence of dipolar interactions on the magnetic properties of these nanostructured BCP materials was studied by varying the molar ratio of the Co units to the Fe units, while maintaining the cylindrical phase-separated morphology. DC magnetic measurements, including magnetization versus field, zero-field-cooled, and field-cooled, as well as AC susceptibility measurements showed that the magnetic properties of the nanostructured BCP materials could be easily tuned by diluting the cobalt density with Fe units in the cylindrical domains. Decreasing the cobalt density weakened the dipolar interactions of the cobalt nanoparticles, leading to the transition from a room temperature ferromagnetic (RTF) to a superparamagnetic material. These results confirmed that dipolar interactions of the cobalt nanoparticles within the phase-separated domains were responsible for the RTF properties of the nanostructured BCP materials.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0E1Lw0AQBuBFFFurB_-A5CLoIbo7m002R1u0CvUDqeewn5qaZONugvTfG2ntydMw8MwL8yJ0SvAVwUCuV4JiBkku99CYMMAxI5DuozHGGOKMp3SEjkJYDWsCnByiEQDPhstsjOZPonGh873qem90NK2c-oxfRaNdHc1c66p1bXyIvsvuI1r2jZCViR7Fe2O6UkUv3rXGd6UJx-jAiiqYk-2coLe72-XsPl48zx9mN4tYUMK6mHHONM0Nl9xymxCtiVYghbXaMsxFKkFanSmhKHCV0jwXKUsFaEhBJprRCbrY5LbeffUmdEVdBmWqSjTG9aEgmHKAnAAZ6OWGKu9C8MYWrS9r4dcDKn57K3a9DfZsG9vL2uid_CtqAOcbIFQoVq73zfDlP0E_8B50tA</recordid><startdate>20120905</startdate><enddate>20120905</enddate><creator>Zha, Yongping</creator><creator>Thaker, Hitesh D</creator><creator>Maddikeri, Raghavendra R</creator><creator>Gido, Samuel P</creator><creator>Tuominen, Mark T</creator><creator>Tew, Gregory N</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120905</creationdate><title>Nanostructured Block-Random Copolymers with Tunable Magnetic Properties</title><author>Zha, Yongping ; Thaker, Hitesh D ; Maddikeri, Raghavendra R ; Gido, Samuel P ; Tuominen, Mark T ; Tew, Gregory N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-5885d39e8b8f8f41dd1dc2baffdf508a6b2bfd7cac328c6399a656a2d262b4d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zha, Yongping</creatorcontrib><creatorcontrib>Thaker, Hitesh D</creatorcontrib><creatorcontrib>Maddikeri, Raghavendra R</creatorcontrib><creatorcontrib>Gido, Samuel P</creatorcontrib><creatorcontrib>Tuominen, Mark T</creatorcontrib><creatorcontrib>Tew, Gregory N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zha, Yongping</au><au>Thaker, Hitesh D</au><au>Maddikeri, Raghavendra R</au><au>Gido, Samuel P</au><au>Tuominen, Mark T</au><au>Tew, Gregory N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured Block-Random Copolymers with Tunable Magnetic Properties</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2012-09-05</date><risdate>2012</risdate><volume>134</volume><issue>35</issue><spage>14534</spage><epage>14541</epage><pages>14534-14541</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>It was recently shown that block copolymers (BCPs) produced room-temperature ferromagnetic materials (RTFMs) due to their nanoscopic ordering and the cylindrical phase yielded the highest coercivity. Here, a series of metal-containing block-random copolymers composed of an alkyl-functionalized homo block (C16) and a random block of cobalt complex- (Co) and ferrocene-functionalized (Fe) units was synthesized via ring-opening metathesis polymerization. Taking advantage of the block-random architecture, the influence of dipolar interactions on the magnetic properties of these nanostructured BCP materials was studied by varying the molar ratio of the Co units to the Fe units, while maintaining the cylindrical phase-separated morphology. DC magnetic measurements, including magnetization versus field, zero-field-cooled, and field-cooled, as well as AC susceptibility measurements showed that the magnetic properties of the nanostructured BCP materials could be easily tuned by diluting the cobalt density with Fe units in the cylindrical domains. Decreasing the cobalt density weakened the dipolar interactions of the cobalt nanoparticles, leading to the transition from a room temperature ferromagnetic (RTF) to a superparamagnetic material. These results confirmed that dipolar interactions of the cobalt nanoparticles within the phase-separated domains were responsible for the RTF properties of the nanostructured BCP materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22871027</pmid><doi>10.1021/ja305249b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2012-09, Vol.134 (35), p.14534-14541
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1038229121
source ACS Publications
title Nanostructured Block-Random Copolymers with Tunable Magnetic Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20Block-Random%20Copolymers%20with%20Tunable%20Magnetic%20Properties&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zha,%20Yongping&rft.date=2012-09-05&rft.volume=134&rft.issue=35&rft.spage=14534&rft.epage=14541&rft.pages=14534-14541&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja305249b&rft_dat=%3Cproquest_cross%3E1038229121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038229121&rft_id=info:pmid/22871027&rfr_iscdi=true