Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis

Nineteen pure agave syrups representing the three major production regions and four processing facilities in Mexico were analyzed for their major carbohydrate, polyol, and oligosaccharide profiles, as well as their physicochemical properties (pH, °Brix, total acidity, percent total titratable acidit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2012-09, Vol.60 (35), p.8745-8754
Hauptverfasser: Willems, Jamie L, Low, Nicholas H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8754
container_issue 35
container_start_page 8745
container_title Journal of agricultural and food chemistry
container_volume 60
creator Willems, Jamie L
Low, Nicholas H
description Nineteen pure agave syrups representing the three major production regions and four processing facilities in Mexico were analyzed for their major carbohydrate, polyol, and oligosaccharide profiles, as well as their physicochemical properties (pH, °Brix, total acidity, percent total titratable acidity, and color). Additionally, the detection of intentional debasing of agave syrup with four commercial nutritive sweeteners (HFCS 55 and 90, DE 42 and sucrose) was afforded by oligosaccharide profiling employing both high performance anion exchange liquid chromatography with pulsed amperometric detection (HPAE-PAD) and capillary gas chromatography with flame ionization detection (CGC-FID). Results showed that the major carbohydrate and polyol in agave syrups were fructose and inositol with mean concentrations of 84.29% and 0.38%, respectively. Oligosaccharide profiling was extremely successful for adulteration detection with detection limits ranging from 0.5 to 2.0% for the aforementioned debasing agents. Also, all four of these possible adulterants could be detected within a single chromatographic analysis.
doi_str_mv 10.1021/jf3027342
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038229082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038229082</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-a3bfce17df2acc3a70bd23b0354d86b7ca32d00fd2b167d5a7f09545785c876a3</originalsourceid><addsrcrecordid>eNpt0E1rGzEQBmBRWhon7aF_oNWlkEKcjqTVfhwX9xNSEkhzXma1ki0jr1xJW9j--srYTS69zBzm4WV4CXnD4JoBZx-3RgCvRMGfkQWTHJaSsfo5WUA-LmtZsjNyHuMWAGpZwUtyxnkDTQHlgvz5gVsf6ApD7zfzEDDpK3rn3ezdFcVxoLfOrn1EpTYY7KDpXfDGOh2pN7Rd429N7-cw7a9pu987qzBZPx5uaWMj_YQJafK0ndJGj8kqm2bajujmaOMr8sKgi_r1aV-Qhy-ff66-LW9uv35ftTdLFGWT8uyN0qwaDM9fCKygH7joQchiqMu-Uij4AGAG3rOyGiRWBhpZyKqWqq5KFBfk8pi7D_7XpGPqdjYq7RyO2k-xYyDqQyE1z_TDkargYwzadPtgdxjmjLpD1d1j1dm-PcVO_U4Pj_Jftxm8PwGMCp0JOCobn1wpeN1Ikd27ozPoO1yHbB7uObACgLGmBPaUhCp2Wz-F3GD8z0t_Af42my8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038229082</pqid></control><display><type>article</type><title>Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis</title><source>MEDLINE</source><source>ACS Publications</source><creator>Willems, Jamie L ; Low, Nicholas H</creator><creatorcontrib>Willems, Jamie L ; Low, Nicholas H</creatorcontrib><description>Nineteen pure agave syrups representing the three major production regions and four processing facilities in Mexico were analyzed for their major carbohydrate, polyol, and oligosaccharide profiles, as well as their physicochemical properties (pH, °Brix, total acidity, percent total titratable acidity, and color). Additionally, the detection of intentional debasing of agave syrup with four commercial nutritive sweeteners (HFCS 55 and 90, DE 42 and sucrose) was afforded by oligosaccharide profiling employing both high performance anion exchange liquid chromatography with pulsed amperometric detection (HPAE-PAD) and capillary gas chromatography with flame ionization detection (CGC-FID). Results showed that the major carbohydrate and polyol in agave syrups were fructose and inositol with mean concentrations of 84.29% and 0.38%, respectively. Oligosaccharide profiling was extremely successful for adulteration detection with detection limits ranging from 0.5 to 2.0% for the aforementioned debasing agents. Also, all four of these possible adulterants could be detected within a single chromatographic analysis.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf3027342</identifier><identifier>PMID: 22909406</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>adulterated products ; Agave ; Agave - chemistry ; anion exchange ; Biological and medical sciences ; capillary gas chromatography ; Carbohydrates - analysis ; Chemical Phenomena ; color ; detection limit ; Food additives ; Food Contamination - analysis ; Food industries ; fructose ; Fundamental and applied biological sciences. Psychology ; General aspects ; high fructose corn syrup ; liquid chromatography ; myo-inositol ; Oligosaccharides - analysis ; Plant Extracts - chemistry ; Plant Leaves - chemistry ; Polymers - analysis ; sucrose ; sweeteners ; Sweetening Agents - chemistry ; titratable acidity</subject><ispartof>Journal of agricultural and food chemistry, 2012-09, Vol.60 (35), p.8745-8754</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-a3bfce17df2acc3a70bd23b0354d86b7ca32d00fd2b167d5a7f09545785c876a3</citedby><cites>FETCH-LOGICAL-a369t-a3bfce17df2acc3a70bd23b0354d86b7ca32d00fd2b167d5a7f09545785c876a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jf3027342$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jf3027342$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26328953$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22909406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willems, Jamie L</creatorcontrib><creatorcontrib>Low, Nicholas H</creatorcontrib><title>Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Nineteen pure agave syrups representing the three major production regions and four processing facilities in Mexico were analyzed for their major carbohydrate, polyol, and oligosaccharide profiles, as well as their physicochemical properties (pH, °Brix, total acidity, percent total titratable acidity, and color). Additionally, the detection of intentional debasing of agave syrup with four commercial nutritive sweeteners (HFCS 55 and 90, DE 42 and sucrose) was afforded by oligosaccharide profiling employing both high performance anion exchange liquid chromatography with pulsed amperometric detection (HPAE-PAD) and capillary gas chromatography with flame ionization detection (CGC-FID). Results showed that the major carbohydrate and polyol in agave syrups were fructose and inositol with mean concentrations of 84.29% and 0.38%, respectively. Oligosaccharide profiling was extremely successful for adulteration detection with detection limits ranging from 0.5 to 2.0% for the aforementioned debasing agents. Also, all four of these possible adulterants could be detected within a single chromatographic analysis.</description><subject>adulterated products</subject><subject>Agave</subject><subject>Agave - chemistry</subject><subject>anion exchange</subject><subject>Biological and medical sciences</subject><subject>capillary gas chromatography</subject><subject>Carbohydrates - analysis</subject><subject>Chemical Phenomena</subject><subject>color</subject><subject>detection limit</subject><subject>Food additives</subject><subject>Food Contamination - analysis</subject><subject>Food industries</subject><subject>fructose</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>high fructose corn syrup</subject><subject>liquid chromatography</subject><subject>myo-inositol</subject><subject>Oligosaccharides - analysis</subject><subject>Plant Extracts - chemistry</subject><subject>Plant Leaves - chemistry</subject><subject>Polymers - analysis</subject><subject>sucrose</subject><subject>sweeteners</subject><subject>Sweetening Agents - chemistry</subject><subject>titratable acidity</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1rGzEQBmBRWhon7aF_oNWlkEKcjqTVfhwX9xNSEkhzXma1ki0jr1xJW9j--srYTS69zBzm4WV4CXnD4JoBZx-3RgCvRMGfkQWTHJaSsfo5WUA-LmtZsjNyHuMWAGpZwUtyxnkDTQHlgvz5gVsf6ApD7zfzEDDpK3rn3ezdFcVxoLfOrn1EpTYY7KDpXfDGOh2pN7Rd429N7-cw7a9pu987qzBZPx5uaWMj_YQJafK0ndJGj8kqm2bajujmaOMr8sKgi_r1aV-Qhy-ff66-LW9uv35ftTdLFGWT8uyN0qwaDM9fCKygH7joQchiqMu-Uij4AGAG3rOyGiRWBhpZyKqWqq5KFBfk8pi7D_7XpGPqdjYq7RyO2k-xYyDqQyE1z_TDkargYwzadPtgdxjmjLpD1d1j1dm-PcVO_U4Pj_Jftxm8PwGMCp0JOCobn1wpeN1Ikd27ozPoO1yHbB7uObACgLGmBPaUhCp2Wz-F3GD8z0t_Af42my8</recordid><startdate>20120905</startdate><enddate>20120905</enddate><creator>Willems, Jamie L</creator><creator>Low, Nicholas H</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120905</creationdate><title>Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis</title><author>Willems, Jamie L ; Low, Nicholas H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-a3bfce17df2acc3a70bd23b0354d86b7ca32d00fd2b167d5a7f09545785c876a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>adulterated products</topic><topic>Agave</topic><topic>Agave - chemistry</topic><topic>anion exchange</topic><topic>Biological and medical sciences</topic><topic>capillary gas chromatography</topic><topic>Carbohydrates - analysis</topic><topic>Chemical Phenomena</topic><topic>color</topic><topic>detection limit</topic><topic>Food additives</topic><topic>Food Contamination - analysis</topic><topic>Food industries</topic><topic>fructose</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>high fructose corn syrup</topic><topic>liquid chromatography</topic><topic>myo-inositol</topic><topic>Oligosaccharides - analysis</topic><topic>Plant Extracts - chemistry</topic><topic>Plant Leaves - chemistry</topic><topic>Polymers - analysis</topic><topic>sucrose</topic><topic>sweeteners</topic><topic>Sweetening Agents - chemistry</topic><topic>titratable acidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willems, Jamie L</creatorcontrib><creatorcontrib>Low, Nicholas H</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willems, Jamie L</au><au>Low, Nicholas H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2012-09-05</date><risdate>2012</risdate><volume>60</volume><issue>35</issue><spage>8745</spage><epage>8754</epage><pages>8745-8754</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Nineteen pure agave syrups representing the three major production regions and four processing facilities in Mexico were analyzed for their major carbohydrate, polyol, and oligosaccharide profiles, as well as their physicochemical properties (pH, °Brix, total acidity, percent total titratable acidity, and color). Additionally, the detection of intentional debasing of agave syrup with four commercial nutritive sweeteners (HFCS 55 and 90, DE 42 and sucrose) was afforded by oligosaccharide profiling employing both high performance anion exchange liquid chromatography with pulsed amperometric detection (HPAE-PAD) and capillary gas chromatography with flame ionization detection (CGC-FID). Results showed that the major carbohydrate and polyol in agave syrups were fructose and inositol with mean concentrations of 84.29% and 0.38%, respectively. Oligosaccharide profiling was extremely successful for adulteration detection with detection limits ranging from 0.5 to 2.0% for the aforementioned debasing agents. Also, all four of these possible adulterants could be detected within a single chromatographic analysis.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22909406</pmid><doi>10.1021/jf3027342</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2012-09, Vol.60 (35), p.8745-8754
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_1038229082
source MEDLINE; ACS Publications
subjects adulterated products
Agave
Agave - chemistry
anion exchange
Biological and medical sciences
capillary gas chromatography
Carbohydrates - analysis
Chemical Phenomena
color
detection limit
Food additives
Food Contamination - analysis
Food industries
fructose
Fundamental and applied biological sciences. Psychology
General aspects
high fructose corn syrup
liquid chromatography
myo-inositol
Oligosaccharides - analysis
Plant Extracts - chemistry
Plant Leaves - chemistry
Polymers - analysis
sucrose
sweeteners
Sweetening Agents - chemistry
titratable acidity
title Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Major%20Carbohydrate,%20Polyol,%20and%20Oligosaccharide%20Profiles%20of%20Agave%20Syrup.%20Application%20of%20this%20Data%20to%20Authenticity%20Analysis&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Willems,%20Jamie%20L&rft.date=2012-09-05&rft.volume=60&rft.issue=35&rft.spage=8745&rft.epage=8754&rft.pages=8745-8754&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf3027342&rft_dat=%3Cproquest_cross%3E1038229082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038229082&rft_id=info:pmid/22909406&rfr_iscdi=true