Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis
Nineteen pure agave syrups representing the three major production regions and four processing facilities in Mexico were analyzed for their major carbohydrate, polyol, and oligosaccharide profiles, as well as their physicochemical properties (pH, °Brix, total acidity, percent total titratable acidit...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2012-09, Vol.60 (35), p.8745-8754 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8754 |
---|---|
container_issue | 35 |
container_start_page | 8745 |
container_title | Journal of agricultural and food chemistry |
container_volume | 60 |
creator | Willems, Jamie L Low, Nicholas H |
description | Nineteen pure agave syrups representing the three major production regions and four processing facilities in Mexico were analyzed for their major carbohydrate, polyol, and oligosaccharide profiles, as well as their physicochemical properties (pH, °Brix, total acidity, percent total titratable acidity, and color). Additionally, the detection of intentional debasing of agave syrup with four commercial nutritive sweeteners (HFCS 55 and 90, DE 42 and sucrose) was afforded by oligosaccharide profiling employing both high performance anion exchange liquid chromatography with pulsed amperometric detection (HPAE-PAD) and capillary gas chromatography with flame ionization detection (CGC-FID). Results showed that the major carbohydrate and polyol in agave syrups were fructose and inositol with mean concentrations of 84.29% and 0.38%, respectively. Oligosaccharide profiling was extremely successful for adulteration detection with detection limits ranging from 0.5 to 2.0% for the aforementioned debasing agents. Also, all four of these possible adulterants could be detected within a single chromatographic analysis. |
doi_str_mv | 10.1021/jf3027342 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038229082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038229082</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-a3bfce17df2acc3a70bd23b0354d86b7ca32d00fd2b167d5a7f09545785c876a3</originalsourceid><addsrcrecordid>eNpt0E1rGzEQBmBRWhon7aF_oNWlkEKcjqTVfhwX9xNSEkhzXma1ki0jr1xJW9j--srYTS69zBzm4WV4CXnD4JoBZx-3RgCvRMGfkQWTHJaSsfo5WUA-LmtZsjNyHuMWAGpZwUtyxnkDTQHlgvz5gVsf6ApD7zfzEDDpK3rn3ezdFcVxoLfOrn1EpTYY7KDpXfDGOh2pN7Rd429N7-cw7a9pu987qzBZPx5uaWMj_YQJafK0ndJGj8kqm2bajujmaOMr8sKgi_r1aV-Qhy-ff66-LW9uv35ftTdLFGWT8uyN0qwaDM9fCKygH7joQchiqMu-Uij4AGAG3rOyGiRWBhpZyKqWqq5KFBfk8pi7D_7XpGPqdjYq7RyO2k-xYyDqQyE1z_TDkargYwzadPtgdxjmjLpD1d1j1dm-PcVO_U4Pj_Jftxm8PwGMCp0JOCobn1wpeN1Ikd27ozPoO1yHbB7uObACgLGmBPaUhCp2Wz-F3GD8z0t_Af42my8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038229082</pqid></control><display><type>article</type><title>Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis</title><source>MEDLINE</source><source>ACS Publications</source><creator>Willems, Jamie L ; Low, Nicholas H</creator><creatorcontrib>Willems, Jamie L ; Low, Nicholas H</creatorcontrib><description>Nineteen pure agave syrups representing the three major production regions and four processing facilities in Mexico were analyzed for their major carbohydrate, polyol, and oligosaccharide profiles, as well as their physicochemical properties (pH, °Brix, total acidity, percent total titratable acidity, and color). Additionally, the detection of intentional debasing of agave syrup with four commercial nutritive sweeteners (HFCS 55 and 90, DE 42 and sucrose) was afforded by oligosaccharide profiling employing both high performance anion exchange liquid chromatography with pulsed amperometric detection (HPAE-PAD) and capillary gas chromatography with flame ionization detection (CGC-FID). Results showed that the major carbohydrate and polyol in agave syrups were fructose and inositol with mean concentrations of 84.29% and 0.38%, respectively. Oligosaccharide profiling was extremely successful for adulteration detection with detection limits ranging from 0.5 to 2.0% for the aforementioned debasing agents. Also, all four of these possible adulterants could be detected within a single chromatographic analysis.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf3027342</identifier><identifier>PMID: 22909406</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>adulterated products ; Agave ; Agave - chemistry ; anion exchange ; Biological and medical sciences ; capillary gas chromatography ; Carbohydrates - analysis ; Chemical Phenomena ; color ; detection limit ; Food additives ; Food Contamination - analysis ; Food industries ; fructose ; Fundamental and applied biological sciences. Psychology ; General aspects ; high fructose corn syrup ; liquid chromatography ; myo-inositol ; Oligosaccharides - analysis ; Plant Extracts - chemistry ; Plant Leaves - chemistry ; Polymers - analysis ; sucrose ; sweeteners ; Sweetening Agents - chemistry ; titratable acidity</subject><ispartof>Journal of agricultural and food chemistry, 2012-09, Vol.60 (35), p.8745-8754</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-a3bfce17df2acc3a70bd23b0354d86b7ca32d00fd2b167d5a7f09545785c876a3</citedby><cites>FETCH-LOGICAL-a369t-a3bfce17df2acc3a70bd23b0354d86b7ca32d00fd2b167d5a7f09545785c876a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jf3027342$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jf3027342$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26328953$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22909406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willems, Jamie L</creatorcontrib><creatorcontrib>Low, Nicholas H</creatorcontrib><title>Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Nineteen pure agave syrups representing the three major production regions and four processing facilities in Mexico were analyzed for their major carbohydrate, polyol, and oligosaccharide profiles, as well as their physicochemical properties (pH, °Brix, total acidity, percent total titratable acidity, and color). Additionally, the detection of intentional debasing of agave syrup with four commercial nutritive sweeteners (HFCS 55 and 90, DE 42 and sucrose) was afforded by oligosaccharide profiling employing both high performance anion exchange liquid chromatography with pulsed amperometric detection (HPAE-PAD) and capillary gas chromatography with flame ionization detection (CGC-FID). Results showed that the major carbohydrate and polyol in agave syrups were fructose and inositol with mean concentrations of 84.29% and 0.38%, respectively. Oligosaccharide profiling was extremely successful for adulteration detection with detection limits ranging from 0.5 to 2.0% for the aforementioned debasing agents. Also, all four of these possible adulterants could be detected within a single chromatographic analysis.</description><subject>adulterated products</subject><subject>Agave</subject><subject>Agave - chemistry</subject><subject>anion exchange</subject><subject>Biological and medical sciences</subject><subject>capillary gas chromatography</subject><subject>Carbohydrates - analysis</subject><subject>Chemical Phenomena</subject><subject>color</subject><subject>detection limit</subject><subject>Food additives</subject><subject>Food Contamination - analysis</subject><subject>Food industries</subject><subject>fructose</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>high fructose corn syrup</subject><subject>liquid chromatography</subject><subject>myo-inositol</subject><subject>Oligosaccharides - analysis</subject><subject>Plant Extracts - chemistry</subject><subject>Plant Leaves - chemistry</subject><subject>Polymers - analysis</subject><subject>sucrose</subject><subject>sweeteners</subject><subject>Sweetening Agents - chemistry</subject><subject>titratable acidity</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1rGzEQBmBRWhon7aF_oNWlkEKcjqTVfhwX9xNSEkhzXma1ki0jr1xJW9j--srYTS69zBzm4WV4CXnD4JoBZx-3RgCvRMGfkQWTHJaSsfo5WUA-LmtZsjNyHuMWAGpZwUtyxnkDTQHlgvz5gVsf6ApD7zfzEDDpK3rn3ezdFcVxoLfOrn1EpTYY7KDpXfDGOh2pN7Rd429N7-cw7a9pu987qzBZPx5uaWMj_YQJafK0ndJGj8kqm2bajujmaOMr8sKgi_r1aV-Qhy-ff66-LW9uv35ftTdLFGWT8uyN0qwaDM9fCKygH7joQchiqMu-Uij4AGAG3rOyGiRWBhpZyKqWqq5KFBfk8pi7D_7XpGPqdjYq7RyO2k-xYyDqQyE1z_TDkargYwzadPtgdxjmjLpD1d1j1dm-PcVO_U4Pj_Jftxm8PwGMCp0JOCobn1wpeN1Ikd27ozPoO1yHbB7uObACgLGmBPaUhCp2Wz-F3GD8z0t_Af42my8</recordid><startdate>20120905</startdate><enddate>20120905</enddate><creator>Willems, Jamie L</creator><creator>Low, Nicholas H</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120905</creationdate><title>Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis</title><author>Willems, Jamie L ; Low, Nicholas H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-a3bfce17df2acc3a70bd23b0354d86b7ca32d00fd2b167d5a7f09545785c876a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>adulterated products</topic><topic>Agave</topic><topic>Agave - chemistry</topic><topic>anion exchange</topic><topic>Biological and medical sciences</topic><topic>capillary gas chromatography</topic><topic>Carbohydrates - analysis</topic><topic>Chemical Phenomena</topic><topic>color</topic><topic>detection limit</topic><topic>Food additives</topic><topic>Food Contamination - analysis</topic><topic>Food industries</topic><topic>fructose</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>high fructose corn syrup</topic><topic>liquid chromatography</topic><topic>myo-inositol</topic><topic>Oligosaccharides - analysis</topic><topic>Plant Extracts - chemistry</topic><topic>Plant Leaves - chemistry</topic><topic>Polymers - analysis</topic><topic>sucrose</topic><topic>sweeteners</topic><topic>Sweetening Agents - chemistry</topic><topic>titratable acidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willems, Jamie L</creatorcontrib><creatorcontrib>Low, Nicholas H</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willems, Jamie L</au><au>Low, Nicholas H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2012-09-05</date><risdate>2012</risdate><volume>60</volume><issue>35</issue><spage>8745</spage><epage>8754</epage><pages>8745-8754</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Nineteen pure agave syrups representing the three major production regions and four processing facilities in Mexico were analyzed for their major carbohydrate, polyol, and oligosaccharide profiles, as well as their physicochemical properties (pH, °Brix, total acidity, percent total titratable acidity, and color). Additionally, the detection of intentional debasing of agave syrup with four commercial nutritive sweeteners (HFCS 55 and 90, DE 42 and sucrose) was afforded by oligosaccharide profiling employing both high performance anion exchange liquid chromatography with pulsed amperometric detection (HPAE-PAD) and capillary gas chromatography with flame ionization detection (CGC-FID). Results showed that the major carbohydrate and polyol in agave syrups were fructose and inositol with mean concentrations of 84.29% and 0.38%, respectively. Oligosaccharide profiling was extremely successful for adulteration detection with detection limits ranging from 0.5 to 2.0% for the aforementioned debasing agents. Also, all four of these possible adulterants could be detected within a single chromatographic analysis.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22909406</pmid><doi>10.1021/jf3027342</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8561 |
ispartof | Journal of agricultural and food chemistry, 2012-09, Vol.60 (35), p.8745-8754 |
issn | 0021-8561 1520-5118 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038229082 |
source | MEDLINE; ACS Publications |
subjects | adulterated products Agave Agave - chemistry anion exchange Biological and medical sciences capillary gas chromatography Carbohydrates - analysis Chemical Phenomena color detection limit Food additives Food Contamination - analysis Food industries fructose Fundamental and applied biological sciences. Psychology General aspects high fructose corn syrup liquid chromatography myo-inositol Oligosaccharides - analysis Plant Extracts - chemistry Plant Leaves - chemistry Polymers - analysis sucrose sweeteners Sweetening Agents - chemistry titratable acidity |
title | Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Major%20Carbohydrate,%20Polyol,%20and%20Oligosaccharide%20Profiles%20of%20Agave%20Syrup.%20Application%20of%20this%20Data%20to%20Authenticity%20Analysis&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Willems,%20Jamie%20L&rft.date=2012-09-05&rft.volume=60&rft.issue=35&rft.spage=8745&rft.epage=8754&rft.pages=8745-8754&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf3027342&rft_dat=%3Cproquest_cross%3E1038229082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038229082&rft_id=info:pmid/22909406&rfr_iscdi=true |