Renewable Nitrogen-Doped Hydrothermal Carbons Derived from Microalgae

Nitrogen‐doped carbon materials are synthesized via an effective, sustainable, and green one‐step route based on the hydrothermal carbonization of microalgae with high nitrogen content (ca. 11 wt %). The addition of the monosaccharide glucose to the reaction mixture is found to be advantageous, enha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2012-09, Vol.5 (9), p.1834-1840
Hauptverfasser: Falco, Camillo, Sevilla, Marta, White, Robin J., Rothe, Regina, Titirici, Maria-Magdalena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1840
container_issue 9
container_start_page 1834
container_title ChemSusChem
container_volume 5
creator Falco, Camillo
Sevilla, Marta
White, Robin J.
Rothe, Regina
Titirici, Maria-Magdalena
description Nitrogen‐doped carbon materials are synthesized via an effective, sustainable, and green one‐step route based on the hydrothermal carbonization of microalgae with high nitrogen content (ca. 11 wt %). The addition of the monosaccharide glucose to the reaction mixture is found to be advantageous, enhancing the fixation of nitrogen in the synthesized carbons, resulting in materials possessing nitrogen content in excess of 7 wt %, and leading to promising reaction yields. Increasing the amount of glucose leads to a higher nitrogen retention in the carbons, which suggests co‐condensation of the microalgae and glucose‐derived degradation/hydrolysis products via Maillard‐type cascade reactions, yielding nitrogen‐containing aromatic heterocycles (e.g., pyrroles) as confirmed by several analytical techniques. Increasing the HTC processing temperature leads to a further aromatization of the chemical structure of the HTC carbon and the formation of increasingly more condensed nitrogen‐containing functional motifs (i.e., pyridinic and quaternary nitrogen). Keeping it in: Hydrothermal carbonization of microalgae/glucose mixtures is a green, sustainable, and economical route to synthesize nitrogen‐doped carbons. The nitrogen contents are in the range of 7–8 wt %. The nitrogen is stored in stable heterocyclic aromatic structures, such as pyrroles, pyridines, and quaternary nitrogen species, which further translates in the preservation of nitrogen content when the material is pyrolyzed.
doi_str_mv 10.1002/cssc.201200022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038228392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038228392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4892-73f5c00be20c302ec4cd060df3e10019664accbdafb9f376903e7331649d81a93</originalsourceid><addsrcrecordid>eNqFkElPwzAQhS0EoqVw5Yhy5JLiLdsRpRtSKRItgpvlOJMSyFLslNJ_j6tAxI3TeOTvPb15CF0SPCQY0xtljBpSTCi2Gz1CfRL63PV8_nLcvRnpoTNj3jD2ceT7p6hHqcc5D0kfjR-hgp1MCnAWeaPrNVTuqN5A6sz2qa6bV9ClLJxY6qSujDMCnX_az0zXpXOfK13LYi3hHJ1ksjBw8TMH6GkyXsUzd_4wvYtv567iYUTdgGWewjgBihXDFBRXqc2UZgzsMcRm41KpJJVZEmUs8CPMIGCM-DxKQyIjNkDXre9G1x9bMI0oc6OgKGQF9dYIgllIacgiatFhi9qMxmjIxEbnpdR7C4lDdeJQneiqs4KrH-9tUkLa4b9dWSBqgV1ewP4fOxEvl_Ffc7fV5qaBr04r9bvwAxZ44nkxFWFMQ0omU7Fi36RviRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038228392</pqid></control><display><type>article</type><title>Renewable Nitrogen-Doped Hydrothermal Carbons Derived from Microalgae</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Falco, Camillo ; Sevilla, Marta ; White, Robin J. ; Rothe, Regina ; Titirici, Maria-Magdalena</creator><creatorcontrib>Falco, Camillo ; Sevilla, Marta ; White, Robin J. ; Rothe, Regina ; Titirici, Maria-Magdalena</creatorcontrib><description>Nitrogen‐doped carbon materials are synthesized via an effective, sustainable, and green one‐step route based on the hydrothermal carbonization of microalgae with high nitrogen content (ca. 11 wt %). The addition of the monosaccharide glucose to the reaction mixture is found to be advantageous, enhancing the fixation of nitrogen in the synthesized carbons, resulting in materials possessing nitrogen content in excess of 7 wt %, and leading to promising reaction yields. Increasing the amount of glucose leads to a higher nitrogen retention in the carbons, which suggests co‐condensation of the microalgae and glucose‐derived degradation/hydrolysis products via Maillard‐type cascade reactions, yielding nitrogen‐containing aromatic heterocycles (e.g., pyrroles) as confirmed by several analytical techniques. Increasing the HTC processing temperature leads to a further aromatization of the chemical structure of the HTC carbon and the formation of increasingly more condensed nitrogen‐containing functional motifs (i.e., pyridinic and quaternary nitrogen). Keeping it in: Hydrothermal carbonization of microalgae/glucose mixtures is a green, sustainable, and economical route to synthesize nitrogen‐doped carbons. The nitrogen contents are in the range of 7–8 wt %. The nitrogen is stored in stable heterocyclic aromatic structures, such as pyrroles, pyridines, and quaternary nitrogen species, which further translates in the preservation of nitrogen content when the material is pyrolyzed.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201200022</identifier><identifier>PMID: 22544481</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Bacterial Proteins - chemistry ; biomass ; carbon ; Carbon - chemistry ; Cyanobacteria - chemistry ; doping ; Glucose - chemistry ; green chemistry ; Green Chemistry Technology ; Microalgae - chemistry ; Monosaccharides - chemistry ; nitrogen ; Nitrogen - chemistry</subject><ispartof>ChemSusChem, 2012-09, Vol.5 (9), p.1834-1840</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4892-73f5c00be20c302ec4cd060df3e10019664accbdafb9f376903e7331649d81a93</citedby><cites>FETCH-LOGICAL-c4892-73f5c00be20c302ec4cd060df3e10019664accbdafb9f376903e7331649d81a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201200022$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201200022$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22544481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falco, Camillo</creatorcontrib><creatorcontrib>Sevilla, Marta</creatorcontrib><creatorcontrib>White, Robin J.</creatorcontrib><creatorcontrib>Rothe, Regina</creatorcontrib><creatorcontrib>Titirici, Maria-Magdalena</creatorcontrib><title>Renewable Nitrogen-Doped Hydrothermal Carbons Derived from Microalgae</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Nitrogen‐doped carbon materials are synthesized via an effective, sustainable, and green one‐step route based on the hydrothermal carbonization of microalgae with high nitrogen content (ca. 11 wt %). The addition of the monosaccharide glucose to the reaction mixture is found to be advantageous, enhancing the fixation of nitrogen in the synthesized carbons, resulting in materials possessing nitrogen content in excess of 7 wt %, and leading to promising reaction yields. Increasing the amount of glucose leads to a higher nitrogen retention in the carbons, which suggests co‐condensation of the microalgae and glucose‐derived degradation/hydrolysis products via Maillard‐type cascade reactions, yielding nitrogen‐containing aromatic heterocycles (e.g., pyrroles) as confirmed by several analytical techniques. Increasing the HTC processing temperature leads to a further aromatization of the chemical structure of the HTC carbon and the formation of increasingly more condensed nitrogen‐containing functional motifs (i.e., pyridinic and quaternary nitrogen). Keeping it in: Hydrothermal carbonization of microalgae/glucose mixtures is a green, sustainable, and economical route to synthesize nitrogen‐doped carbons. The nitrogen contents are in the range of 7–8 wt %. The nitrogen is stored in stable heterocyclic aromatic structures, such as pyrroles, pyridines, and quaternary nitrogen species, which further translates in the preservation of nitrogen content when the material is pyrolyzed.</description><subject>Bacterial Proteins - chemistry</subject><subject>biomass</subject><subject>carbon</subject><subject>Carbon - chemistry</subject><subject>Cyanobacteria - chemistry</subject><subject>doping</subject><subject>Glucose - chemistry</subject><subject>green chemistry</subject><subject>Green Chemistry Technology</subject><subject>Microalgae - chemistry</subject><subject>Monosaccharides - chemistry</subject><subject>nitrogen</subject><subject>Nitrogen - chemistry</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkElPwzAQhS0EoqVw5Yhy5JLiLdsRpRtSKRItgpvlOJMSyFLslNJ_j6tAxI3TeOTvPb15CF0SPCQY0xtljBpSTCi2Gz1CfRL63PV8_nLcvRnpoTNj3jD2ceT7p6hHqcc5D0kfjR-hgp1MCnAWeaPrNVTuqN5A6sz2qa6bV9ClLJxY6qSujDMCnX_az0zXpXOfK13LYi3hHJ1ksjBw8TMH6GkyXsUzd_4wvYtv567iYUTdgGWewjgBihXDFBRXqc2UZgzsMcRm41KpJJVZEmUs8CPMIGCM-DxKQyIjNkDXre9G1x9bMI0oc6OgKGQF9dYIgllIacgiatFhi9qMxmjIxEbnpdR7C4lDdeJQneiqs4KrH-9tUkLa4b9dWSBqgV1ewP4fOxEvl_Ffc7fV5qaBr04r9bvwAxZ44nkxFWFMQ0omU7Fi36RviRQ</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Falco, Camillo</creator><creator>Sevilla, Marta</creator><creator>White, Robin J.</creator><creator>Rothe, Regina</creator><creator>Titirici, Maria-Magdalena</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201209</creationdate><title>Renewable Nitrogen-Doped Hydrothermal Carbons Derived from Microalgae</title><author>Falco, Camillo ; Sevilla, Marta ; White, Robin J. ; Rothe, Regina ; Titirici, Maria-Magdalena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4892-73f5c00be20c302ec4cd060df3e10019664accbdafb9f376903e7331649d81a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>biomass</topic><topic>carbon</topic><topic>Carbon - chemistry</topic><topic>Cyanobacteria - chemistry</topic><topic>doping</topic><topic>Glucose - chemistry</topic><topic>green chemistry</topic><topic>Green Chemistry Technology</topic><topic>Microalgae - chemistry</topic><topic>Monosaccharides - chemistry</topic><topic>nitrogen</topic><topic>Nitrogen - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falco, Camillo</creatorcontrib><creatorcontrib>Sevilla, Marta</creatorcontrib><creatorcontrib>White, Robin J.</creatorcontrib><creatorcontrib>Rothe, Regina</creatorcontrib><creatorcontrib>Titirici, Maria-Magdalena</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falco, Camillo</au><au>Sevilla, Marta</au><au>White, Robin J.</au><au>Rothe, Regina</au><au>Titirici, Maria-Magdalena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renewable Nitrogen-Doped Hydrothermal Carbons Derived from Microalgae</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2012-09</date><risdate>2012</risdate><volume>5</volume><issue>9</issue><spage>1834</spage><epage>1840</epage><pages>1834-1840</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Nitrogen‐doped carbon materials are synthesized via an effective, sustainable, and green one‐step route based on the hydrothermal carbonization of microalgae with high nitrogen content (ca. 11 wt %). The addition of the monosaccharide glucose to the reaction mixture is found to be advantageous, enhancing the fixation of nitrogen in the synthesized carbons, resulting in materials possessing nitrogen content in excess of 7 wt %, and leading to promising reaction yields. Increasing the amount of glucose leads to a higher nitrogen retention in the carbons, which suggests co‐condensation of the microalgae and glucose‐derived degradation/hydrolysis products via Maillard‐type cascade reactions, yielding nitrogen‐containing aromatic heterocycles (e.g., pyrroles) as confirmed by several analytical techniques. Increasing the HTC processing temperature leads to a further aromatization of the chemical structure of the HTC carbon and the formation of increasingly more condensed nitrogen‐containing functional motifs (i.e., pyridinic and quaternary nitrogen). Keeping it in: Hydrothermal carbonization of microalgae/glucose mixtures is a green, sustainable, and economical route to synthesize nitrogen‐doped carbons. The nitrogen contents are in the range of 7–8 wt %. The nitrogen is stored in stable heterocyclic aromatic structures, such as pyrroles, pyridines, and quaternary nitrogen species, which further translates in the preservation of nitrogen content when the material is pyrolyzed.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22544481</pmid><doi>10.1002/cssc.201200022</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2012-09, Vol.5 (9), p.1834-1840
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_1038228392
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bacterial Proteins - chemistry
biomass
carbon
Carbon - chemistry
Cyanobacteria - chemistry
doping
Glucose - chemistry
green chemistry
Green Chemistry Technology
Microalgae - chemistry
Monosaccharides - chemistry
nitrogen
Nitrogen - chemistry
title Renewable Nitrogen-Doped Hydrothermal Carbons Derived from Microalgae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renewable%20Nitrogen-Doped%20Hydrothermal%20Carbons%20Derived%20from%20Microalgae&rft.jtitle=ChemSusChem&rft.au=Falco,%20Camillo&rft.date=2012-09&rft.volume=5&rft.issue=9&rft.spage=1834&rft.epage=1840&rft.pages=1834-1840&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201200022&rft_dat=%3Cproquest_cross%3E1038228392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038228392&rft_id=info:pmid/22544481&rfr_iscdi=true