Structure, Bonding, and Catecholase Mechanism of Copper Bispidine Complexes

Oxygen activation by copper(I) complexes with tetra- or pentadentate mono- or dinucleating bispidine ligands is known to lead to unusually stable end-on-[{(bispidine)Cu}2(O2)]2+ complexes (bispidines are methyl-2,4-bis(2-pyridin-yl)-3,7-diazabicyclo-[3.3.1]-nonane-9-diol-1,5-dicarboxylates); catecho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2012-09, Vol.51 (17), p.9214-9225
Hauptverfasser: Comba, Peter, Martin, Bodo, Muruganantham, Amsaveni, Straub, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9225
container_issue 17
container_start_page 9214
container_title Inorganic chemistry
container_volume 51
creator Comba, Peter
Martin, Bodo
Muruganantham, Amsaveni
Straub, Johannes
description Oxygen activation by copper(I) complexes with tetra- or pentadentate mono- or dinucleating bispidine ligands is known to lead to unusually stable end-on-[{(bispidine)Cu}2(O2)]2+ complexes (bispidines are methyl-2,4-bis(2-pyridin-yl)-3,7-diazabicyclo-[3.3.1]-nonane-9-diol-1,5-dicarboxylates); catecholase activity of these dinuclear CuII/I systems has been demonstrated experimentally, and the mechanism has been thoroughly analyzed. The present density functional theory (DFT) based study provides an analysis of the electronic structure and catalytic activity of [{(bispidine)Cu}2(O2)]2+. As a result of the unique square pyramidal coordination geometry, the d x 2–y 2 ground state leads to an unusual σ/π bonding pattern, responsible for the stability of the peroxo complex and the observed catecholase activity with a unique mechanistic pathway. The oxidation of catechol to ortho-quinone (one molecule per catalytic cycle and concomitant formation of one equivalent of H2O2) is shown to occur via an associative, stepwise pathway. The unusual stability of the end-on-peroxo-dicopper(II) complex and isomerization to copper(II) complexes with chelating catecholate ligands, which inhibit the catalytic cycle, are shown to be responsible for an only moderate catalytic activity.
doi_str_mv 10.1021/ic3004917
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038070681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038070681</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-2322b3dc916a1bc8e5b83a3ae68167c8d751afc30c94168c6098c355732338cc3</originalsourceid><addsrcrecordid>eNptkE1LxDAURYMozji68A9IN4LCjL6XTNNk6RS_cMSFCu5KmqbaoW1q0oL-eyMzzsrVuzwOB-4l5BjhAoHiZaUZwFxiskPGGFOYxQhvu2QMEDJyLkfkwPsVAEg25_tkRKkESRMck4fn3g26H5yZRgvbFlX7Po1UW0Sp6o3-sLXyJnoMSbWVbyJbRqntOuOiReW7KuAmPJquNl_GH5K9UtXeHG3uhLzeXL-kd7Pl0-19erWcKYZxP6OM0pwVWiJXmGth4lwwxZThAnmiRZHEqMpQScs5cqE5SKFZHCeMMia0ZhNytvZ2zn4OxvdZU3lt6lq1xg4-Q2ACEgi6gJ6vUe2s986UWeeqRrnvAGW_22Xb7QJ7stEOeWOKLfk3VgBO14DSPlvZwbWh5T-iH42aczc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038070681</pqid></control><display><type>article</type><title>Structure, Bonding, and Catecholase Mechanism of Copper Bispidine Complexes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Comba, Peter ; Martin, Bodo ; Muruganantham, Amsaveni ; Straub, Johannes</creator><creatorcontrib>Comba, Peter ; Martin, Bodo ; Muruganantham, Amsaveni ; Straub, Johannes</creatorcontrib><description>Oxygen activation by copper(I) complexes with tetra- or pentadentate mono- or dinucleating bispidine ligands is known to lead to unusually stable end-on-[{(bispidine)Cu}2(O2)]2+ complexes (bispidines are methyl-2,4-bis(2-pyridin-yl)-3,7-diazabicyclo-[3.3.1]-nonane-9-diol-1,5-dicarboxylates); catecholase activity of these dinuclear CuII/I systems has been demonstrated experimentally, and the mechanism has been thoroughly analyzed. The present density functional theory (DFT) based study provides an analysis of the electronic structure and catalytic activity of [{(bispidine)Cu}2(O2)]2+. As a result of the unique square pyramidal coordination geometry, the d x 2–y 2 ground state leads to an unusual σ/π bonding pattern, responsible for the stability of the peroxo complex and the observed catecholase activity with a unique mechanistic pathway. The oxidation of catechol to ortho-quinone (one molecule per catalytic cycle and concomitant formation of one equivalent of H2O2) is shown to occur via an associative, stepwise pathway. The unusual stability of the end-on-peroxo-dicopper(II) complex and isomerization to copper(II) complexes with chelating catecholate ligands, which inhibit the catalytic cycle, are shown to be responsible for an only moderate catalytic activity.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic3004917</identifier><identifier>PMID: 22909271</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomimetic Materials - chemistry ; Bridged Bicyclo Compounds, Heterocyclic - chemistry ; Catalysis ; Catechol Oxidase - metabolism ; Copper - chemistry ; Electrons ; Organometallic Compounds - chemistry ; Quantum Theory</subject><ispartof>Inorganic chemistry, 2012-09, Vol.51 (17), p.9214-9225</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-2322b3dc916a1bc8e5b83a3ae68167c8d751afc30c94168c6098c355732338cc3</citedby><cites>FETCH-LOGICAL-a315t-2322b3dc916a1bc8e5b83a3ae68167c8d751afc30c94168c6098c355732338cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ic3004917$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ic3004917$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22909271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Comba, Peter</creatorcontrib><creatorcontrib>Martin, Bodo</creatorcontrib><creatorcontrib>Muruganantham, Amsaveni</creatorcontrib><creatorcontrib>Straub, Johannes</creatorcontrib><title>Structure, Bonding, and Catecholase Mechanism of Copper Bispidine Complexes</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Oxygen activation by copper(I) complexes with tetra- or pentadentate mono- or dinucleating bispidine ligands is known to lead to unusually stable end-on-[{(bispidine)Cu}2(O2)]2+ complexes (bispidines are methyl-2,4-bis(2-pyridin-yl)-3,7-diazabicyclo-[3.3.1]-nonane-9-diol-1,5-dicarboxylates); catecholase activity of these dinuclear CuII/I systems has been demonstrated experimentally, and the mechanism has been thoroughly analyzed. The present density functional theory (DFT) based study provides an analysis of the electronic structure and catalytic activity of [{(bispidine)Cu}2(O2)]2+. As a result of the unique square pyramidal coordination geometry, the d x 2–y 2 ground state leads to an unusual σ/π bonding pattern, responsible for the stability of the peroxo complex and the observed catecholase activity with a unique mechanistic pathway. The oxidation of catechol to ortho-quinone (one molecule per catalytic cycle and concomitant formation of one equivalent of H2O2) is shown to occur via an associative, stepwise pathway. The unusual stability of the end-on-peroxo-dicopper(II) complex and isomerization to copper(II) complexes with chelating catecholate ligands, which inhibit the catalytic cycle, are shown to be responsible for an only moderate catalytic activity.</description><subject>Biomimetic Materials - chemistry</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - chemistry</subject><subject>Catalysis</subject><subject>Catechol Oxidase - metabolism</subject><subject>Copper - chemistry</subject><subject>Electrons</subject><subject>Organometallic Compounds - chemistry</subject><subject>Quantum Theory</subject><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LxDAURYMozji68A9IN4LCjL6XTNNk6RS_cMSFCu5KmqbaoW1q0oL-eyMzzsrVuzwOB-4l5BjhAoHiZaUZwFxiskPGGFOYxQhvu2QMEDJyLkfkwPsVAEg25_tkRKkESRMck4fn3g26H5yZRgvbFlX7Po1UW0Sp6o3-sLXyJnoMSbWVbyJbRqntOuOiReW7KuAmPJquNl_GH5K9UtXeHG3uhLzeXL-kd7Pl0-19erWcKYZxP6OM0pwVWiJXmGth4lwwxZThAnmiRZHEqMpQScs5cqE5SKFZHCeMMia0ZhNytvZ2zn4OxvdZU3lt6lq1xg4-Q2ACEgi6gJ6vUe2s986UWeeqRrnvAGW_22Xb7QJ7stEOeWOKLfk3VgBO14DSPlvZwbWh5T-iH42aczc</recordid><startdate>20120903</startdate><enddate>20120903</enddate><creator>Comba, Peter</creator><creator>Martin, Bodo</creator><creator>Muruganantham, Amsaveni</creator><creator>Straub, Johannes</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120903</creationdate><title>Structure, Bonding, and Catecholase Mechanism of Copper Bispidine Complexes</title><author>Comba, Peter ; Martin, Bodo ; Muruganantham, Amsaveni ; Straub, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-2322b3dc916a1bc8e5b83a3ae68167c8d751afc30c94168c6098c355732338cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biomimetic Materials - chemistry</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - chemistry</topic><topic>Catalysis</topic><topic>Catechol Oxidase - metabolism</topic><topic>Copper - chemistry</topic><topic>Electrons</topic><topic>Organometallic Compounds - chemistry</topic><topic>Quantum Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Comba, Peter</creatorcontrib><creatorcontrib>Martin, Bodo</creatorcontrib><creatorcontrib>Muruganantham, Amsaveni</creatorcontrib><creatorcontrib>Straub, Johannes</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Comba, Peter</au><au>Martin, Bodo</au><au>Muruganantham, Amsaveni</au><au>Straub, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure, Bonding, and Catecholase Mechanism of Copper Bispidine Complexes</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2012-09-03</date><risdate>2012</risdate><volume>51</volume><issue>17</issue><spage>9214</spage><epage>9225</epage><pages>9214-9225</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Oxygen activation by copper(I) complexes with tetra- or pentadentate mono- or dinucleating bispidine ligands is known to lead to unusually stable end-on-[{(bispidine)Cu}2(O2)]2+ complexes (bispidines are methyl-2,4-bis(2-pyridin-yl)-3,7-diazabicyclo-[3.3.1]-nonane-9-diol-1,5-dicarboxylates); catecholase activity of these dinuclear CuII/I systems has been demonstrated experimentally, and the mechanism has been thoroughly analyzed. The present density functional theory (DFT) based study provides an analysis of the electronic structure and catalytic activity of [{(bispidine)Cu}2(O2)]2+. As a result of the unique square pyramidal coordination geometry, the d x 2–y 2 ground state leads to an unusual σ/π bonding pattern, responsible for the stability of the peroxo complex and the observed catecholase activity with a unique mechanistic pathway. The oxidation of catechol to ortho-quinone (one molecule per catalytic cycle and concomitant formation of one equivalent of H2O2) is shown to occur via an associative, stepwise pathway. The unusual stability of the end-on-peroxo-dicopper(II) complex and isomerization to copper(II) complexes with chelating catecholate ligands, which inhibit the catalytic cycle, are shown to be responsible for an only moderate catalytic activity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22909271</pmid><doi>10.1021/ic3004917</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2012-09, Vol.51 (17), p.9214-9225
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_1038070681
source MEDLINE; American Chemical Society Journals
subjects Biomimetic Materials - chemistry
Bridged Bicyclo Compounds, Heterocyclic - chemistry
Catalysis
Catechol Oxidase - metabolism
Copper - chemistry
Electrons
Organometallic Compounds - chemistry
Quantum Theory
title Structure, Bonding, and Catecholase Mechanism of Copper Bispidine Complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure,%20Bonding,%20and%20Catecholase%20Mechanism%20of%20Copper%20Bispidine%20Complexes&rft.jtitle=Inorganic%20chemistry&rft.au=Comba,%20Peter&rft.date=2012-09-03&rft.volume=51&rft.issue=17&rft.spage=9214&rft.epage=9225&rft.pages=9214-9225&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic3004917&rft_dat=%3Cproquest_cross%3E1038070681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038070681&rft_id=info:pmid/22909271&rfr_iscdi=true