Comparison of Three Different Tools for Prediction of Seminal Vesicle Invasion at Radical Prostatectomy
Abstract Background Statistical prediction tools are increasingly common, but there is considerable disagreement about how they should be evaluated. Three tools—Partin tables, the European Society for Urological Oncology (ESUO) criteria, and the Gallina nomogram—have been proposed for the prediction...
Gespeichert in:
Veröffentlicht in: | European urology 2012-10, Vol.62 (4), p.590-596 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 596 |
---|---|
container_issue | 4 |
container_start_page | 590 |
container_title | European urology |
container_volume | 62 |
creator | Lughezzani, Giovanni Zorn, Kevin C Budäus, Lars Sun, Maxine Lee, David I Shalhav, Arieh L Zagaya, Gregory P Shikanov, Sergey A Gofrit, Ofer N Thong, Alan E Albala, David M Sun, Leon Cronin, Angel Vickers, Andrew J Karakiewicz, Pierre I |
description | Abstract Background Statistical prediction tools are increasingly common, but there is considerable disagreement about how they should be evaluated. Three tools—Partin tables, the European Society for Urological Oncology (ESUO) criteria, and the Gallina nomogram—have been proposed for the prediction of seminal vesicle invasion (SVI) in patients with clinically localized prostate cancer who are candidates for a radical prostatectomy. Objectives Using different statistical methods, we aimed to determine which of these tools should be used to predict SVI. Design, settings, and participants The independent validation cohort consisted of 2584 patients treated surgically for clinically localized prostate cancer at four North American tertiary care centers between 2002 and 2007. Interventions Robot-assisted laparoscopic radical prostatectomy. Outcome measurements and statistical analysis Primary outcome was the presence of SVI. Traditional (area under the receiver operating characteristic [ROC] curve, calibration plots, the Brier score, sensitivity and specificity, positive and negative predictive value) and novel (decision curve analysis and predictiveness curves) statistical methods quantified the predictive abilities of the three models. Results and limitations Traditional statistical methods (ie, ROC plots and Brier scores) could not clearly determine which one of the three SVI prediction tools should be preferred. For example, ROC plots and Brier scores seemed biased against the binary decision tool (ESUO criteria) and gave discordant results for the continuous predictions of the Partin tables and the Gallina nomogram. The results of the calibration plots were discordant with those of the ROC plots. Conversely, the decision curve indicated that the Partin tables represent the best strategy for stratifying the risk of SVI, resulting in the highest net benefit within the whole range of threshold probabilities. Conclusions When predicting SVI, surgeons should prefer the Partin tables over the ESUO criteria and the Gallina nomogram because this tool provided the highest net benefit. In contrast to traditional statistical methods, decision curve analysis gave an unambiguous result applicable to both continuous and binary models, providing an insight into clinical utility. |
doi_str_mv | 10.1016/j.eururo.2012.04.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1037885527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0302283812004885</els_id><sourcerecordid>1037885527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-ea7127a16600f83766d57c6ffb329e5374cde57dd662a5de17309b28e2a173423</originalsourceid><addsrcrecordid>eNqFkk1v1DAQQC0EokvhHyCUCxKXpGM7trMXJLR8VarUql24Wl5nDF6SeGsnlfbf4ygLSL1wsqV5M555HkJeU6goUHmxr3CKUwwVA8oqqCtg7AlZ0UbxUgkJT8kKOLCSNbw5Iy9S2gMAF2v-nJwxJiQF1azIj03oDyb6FIYiuGL7MyIWH71zGHEYi20IXSpciMVNxNbb0S_cHfZ-MF3xHZO3HRaXw4NJc8yMxa3JYI7dxJBGM6IdQ398SZ450yV8dTrPybfPn7abr-XV9ZfLzYer0tZrPpZoFGXKUCkBXMOVlK1QVjq342yNgqvatihU20rJjGiRKg7rHWuQmXytGT8n75a6hxjuJ0yj7n2y2HVmwDAlTYGrphGCqYzWC2pzoymi04foexOPGdKzYr3Xi2I9K9ZQ66w4p705vTDtemz_Jv1xmoG3J8Ck7MFFM1if_nGSc6Fonbn3C4fZx4PHqJP1ONjsOWZpug3-f508LmA7P8zuf-ER0z5MMf9RnlmnnKPv5nWYt4EygDpL4L8B-WSwuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037885527</pqid></control><display><type>article</type><title>Comparison of Three Different Tools for Prediction of Seminal Vesicle Invasion at Radical Prostatectomy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lughezzani, Giovanni ; Zorn, Kevin C ; Budäus, Lars ; Sun, Maxine ; Lee, David I ; Shalhav, Arieh L ; Zagaya, Gregory P ; Shikanov, Sergey A ; Gofrit, Ofer N ; Thong, Alan E ; Albala, David M ; Sun, Leon ; Cronin, Angel ; Vickers, Andrew J ; Karakiewicz, Pierre I</creator><creatorcontrib>Lughezzani, Giovanni ; Zorn, Kevin C ; Budäus, Lars ; Sun, Maxine ; Lee, David I ; Shalhav, Arieh L ; Zagaya, Gregory P ; Shikanov, Sergey A ; Gofrit, Ofer N ; Thong, Alan E ; Albala, David M ; Sun, Leon ; Cronin, Angel ; Vickers, Andrew J ; Karakiewicz, Pierre I</creatorcontrib><description>Abstract Background Statistical prediction tools are increasingly common, but there is considerable disagreement about how they should be evaluated. Three tools—Partin tables, the European Society for Urological Oncology (ESUO) criteria, and the Gallina nomogram—have been proposed for the prediction of seminal vesicle invasion (SVI) in patients with clinically localized prostate cancer who are candidates for a radical prostatectomy. Objectives Using different statistical methods, we aimed to determine which of these tools should be used to predict SVI. Design, settings, and participants The independent validation cohort consisted of 2584 patients treated surgically for clinically localized prostate cancer at four North American tertiary care centers between 2002 and 2007. Interventions Robot-assisted laparoscopic radical prostatectomy. Outcome measurements and statistical analysis Primary outcome was the presence of SVI. Traditional (area under the receiver operating characteristic [ROC] curve, calibration plots, the Brier score, sensitivity and specificity, positive and negative predictive value) and novel (decision curve analysis and predictiveness curves) statistical methods quantified the predictive abilities of the three models. Results and limitations Traditional statistical methods (ie, ROC plots and Brier scores) could not clearly determine which one of the three SVI prediction tools should be preferred. For example, ROC plots and Brier scores seemed biased against the binary decision tool (ESUO criteria) and gave discordant results for the continuous predictions of the Partin tables and the Gallina nomogram. The results of the calibration plots were discordant with those of the ROC plots. Conversely, the decision curve indicated that the Partin tables represent the best strategy for stratifying the risk of SVI, resulting in the highest net benefit within the whole range of threshold probabilities. Conclusions When predicting SVI, surgeons should prefer the Partin tables over the ESUO criteria and the Gallina nomogram because this tool provided the highest net benefit. In contrast to traditional statistical methods, decision curve analysis gave an unambiguous result applicable to both continuous and binary models, providing an insight into clinical utility.</description><identifier>ISSN: 0302-2838</identifier><identifier>EISSN: 1873-7560</identifier><identifier>DOI: 10.1016/j.eururo.2012.04.022</identifier><identifier>PMID: 22561078</identifier><identifier>CODEN: EUURAV</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algorithms ; Biological and medical sciences ; Decision Support Techniques ; Gynecology. Andrology. Obstetrics ; Humans ; Laparoscopy - instrumentation ; Laparoscopy - methods ; Male ; Male genital diseases ; Medical sciences ; Models, Biological ; Models, Statistical ; Neoplasm Invasiveness ; Neoplasm Staging ; Nephrology. Urinary tract diseases ; Predictive tools ; Prostate ; Prostatectomy ; Prostatectomy - methods ; Prostatic neoplasms ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - surgery ; Retrospective Studies ; Robotics ; ROC Curve ; Seminal vesicles ; Seminal Vesicles - pathology ; Seminal Vesicles - surgery ; Statistics ; Treatment Outcome ; Tumors ; Tumors of the urinary system ; Urinary tract. Prostate gland ; Urology</subject><ispartof>European urology, 2012-10, Vol.62 (4), p.590-596</ispartof><rights>European Association of Urology</rights><rights>2012 European Association of Urology</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 European Association of Urology. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-ea7127a16600f83766d57c6ffb329e5374cde57dd662a5de17309b28e2a173423</citedby><cites>FETCH-LOGICAL-c493t-ea7127a16600f83766d57c6ffb329e5374cde57dd662a5de17309b28e2a173423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eururo.2012.04.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26335714$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22561078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lughezzani, Giovanni</creatorcontrib><creatorcontrib>Zorn, Kevin C</creatorcontrib><creatorcontrib>Budäus, Lars</creatorcontrib><creatorcontrib>Sun, Maxine</creatorcontrib><creatorcontrib>Lee, David I</creatorcontrib><creatorcontrib>Shalhav, Arieh L</creatorcontrib><creatorcontrib>Zagaya, Gregory P</creatorcontrib><creatorcontrib>Shikanov, Sergey A</creatorcontrib><creatorcontrib>Gofrit, Ofer N</creatorcontrib><creatorcontrib>Thong, Alan E</creatorcontrib><creatorcontrib>Albala, David M</creatorcontrib><creatorcontrib>Sun, Leon</creatorcontrib><creatorcontrib>Cronin, Angel</creatorcontrib><creatorcontrib>Vickers, Andrew J</creatorcontrib><creatorcontrib>Karakiewicz, Pierre I</creatorcontrib><title>Comparison of Three Different Tools for Prediction of Seminal Vesicle Invasion at Radical Prostatectomy</title><title>European urology</title><addtitle>Eur Urol</addtitle><description>Abstract Background Statistical prediction tools are increasingly common, but there is considerable disagreement about how they should be evaluated. Three tools—Partin tables, the European Society for Urological Oncology (ESUO) criteria, and the Gallina nomogram—have been proposed for the prediction of seminal vesicle invasion (SVI) in patients with clinically localized prostate cancer who are candidates for a radical prostatectomy. Objectives Using different statistical methods, we aimed to determine which of these tools should be used to predict SVI. Design, settings, and participants The independent validation cohort consisted of 2584 patients treated surgically for clinically localized prostate cancer at four North American tertiary care centers between 2002 and 2007. Interventions Robot-assisted laparoscopic radical prostatectomy. Outcome measurements and statistical analysis Primary outcome was the presence of SVI. Traditional (area under the receiver operating characteristic [ROC] curve, calibration plots, the Brier score, sensitivity and specificity, positive and negative predictive value) and novel (decision curve analysis and predictiveness curves) statistical methods quantified the predictive abilities of the three models. Results and limitations Traditional statistical methods (ie, ROC plots and Brier scores) could not clearly determine which one of the three SVI prediction tools should be preferred. For example, ROC plots and Brier scores seemed biased against the binary decision tool (ESUO criteria) and gave discordant results for the continuous predictions of the Partin tables and the Gallina nomogram. The results of the calibration plots were discordant with those of the ROC plots. Conversely, the decision curve indicated that the Partin tables represent the best strategy for stratifying the risk of SVI, resulting in the highest net benefit within the whole range of threshold probabilities. Conclusions When predicting SVI, surgeons should prefer the Partin tables over the ESUO criteria and the Gallina nomogram because this tool provided the highest net benefit. In contrast to traditional statistical methods, decision curve analysis gave an unambiguous result applicable to both continuous and binary models, providing an insight into clinical utility.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Decision Support Techniques</subject><subject>Gynecology. Andrology. Obstetrics</subject><subject>Humans</subject><subject>Laparoscopy - instrumentation</subject><subject>Laparoscopy - methods</subject><subject>Male</subject><subject>Male genital diseases</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Neoplasm Invasiveness</subject><subject>Neoplasm Staging</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Predictive tools</subject><subject>Prostate</subject><subject>Prostatectomy</subject><subject>Prostatectomy - methods</subject><subject>Prostatic neoplasms</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - surgery</subject><subject>Retrospective Studies</subject><subject>Robotics</subject><subject>ROC Curve</subject><subject>Seminal vesicles</subject><subject>Seminal Vesicles - pathology</subject><subject>Seminal Vesicles - surgery</subject><subject>Statistics</subject><subject>Treatment Outcome</subject><subject>Tumors</subject><subject>Tumors of the urinary system</subject><subject>Urinary tract. Prostate gland</subject><subject>Urology</subject><issn>0302-2838</issn><issn>1873-7560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQQC0EokvhHyCUCxKXpGM7trMXJLR8VarUql24Wl5nDF6SeGsnlfbf4ygLSL1wsqV5M555HkJeU6goUHmxr3CKUwwVA8oqqCtg7AlZ0UbxUgkJT8kKOLCSNbw5Iy9S2gMAF2v-nJwxJiQF1azIj03oDyb6FIYiuGL7MyIWH71zGHEYi20IXSpciMVNxNbb0S_cHfZ-MF3xHZO3HRaXw4NJc8yMxa3JYI7dxJBGM6IdQ398SZ450yV8dTrPybfPn7abr-XV9ZfLzYer0tZrPpZoFGXKUCkBXMOVlK1QVjq342yNgqvatihU20rJjGiRKg7rHWuQmXytGT8n75a6hxjuJ0yj7n2y2HVmwDAlTYGrphGCqYzWC2pzoymi04foexOPGdKzYr3Xi2I9K9ZQ66w4p705vTDtemz_Jv1xmoG3J8Ck7MFFM1if_nGSc6Fonbn3C4fZx4PHqJP1ONjsOWZpug3-f508LmA7P8zuf-ER0z5MMf9RnlmnnKPv5nWYt4EygDpL4L8B-WSwuQ</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Lughezzani, Giovanni</creator><creator>Zorn, Kevin C</creator><creator>Budäus, Lars</creator><creator>Sun, Maxine</creator><creator>Lee, David I</creator><creator>Shalhav, Arieh L</creator><creator>Zagaya, Gregory P</creator><creator>Shikanov, Sergey A</creator><creator>Gofrit, Ofer N</creator><creator>Thong, Alan E</creator><creator>Albala, David M</creator><creator>Sun, Leon</creator><creator>Cronin, Angel</creator><creator>Vickers, Andrew J</creator><creator>Karakiewicz, Pierre I</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20121001</creationdate><title>Comparison of Three Different Tools for Prediction of Seminal Vesicle Invasion at Radical Prostatectomy</title><author>Lughezzani, Giovanni ; Zorn, Kevin C ; Budäus, Lars ; Sun, Maxine ; Lee, David I ; Shalhav, Arieh L ; Zagaya, Gregory P ; Shikanov, Sergey A ; Gofrit, Ofer N ; Thong, Alan E ; Albala, David M ; Sun, Leon ; Cronin, Angel ; Vickers, Andrew J ; Karakiewicz, Pierre I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-ea7127a16600f83766d57c6ffb329e5374cde57dd662a5de17309b28e2a173423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Decision Support Techniques</topic><topic>Gynecology. Andrology. Obstetrics</topic><topic>Humans</topic><topic>Laparoscopy - instrumentation</topic><topic>Laparoscopy - methods</topic><topic>Male</topic><topic>Male genital diseases</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Neoplasm Invasiveness</topic><topic>Neoplasm Staging</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Predictive tools</topic><topic>Prostate</topic><topic>Prostatectomy</topic><topic>Prostatectomy - methods</topic><topic>Prostatic neoplasms</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - surgery</topic><topic>Retrospective Studies</topic><topic>Robotics</topic><topic>ROC Curve</topic><topic>Seminal vesicles</topic><topic>Seminal Vesicles - pathology</topic><topic>Seminal Vesicles - surgery</topic><topic>Statistics</topic><topic>Treatment Outcome</topic><topic>Tumors</topic><topic>Tumors of the urinary system</topic><topic>Urinary tract. Prostate gland</topic><topic>Urology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lughezzani, Giovanni</creatorcontrib><creatorcontrib>Zorn, Kevin C</creatorcontrib><creatorcontrib>Budäus, Lars</creatorcontrib><creatorcontrib>Sun, Maxine</creatorcontrib><creatorcontrib>Lee, David I</creatorcontrib><creatorcontrib>Shalhav, Arieh L</creatorcontrib><creatorcontrib>Zagaya, Gregory P</creatorcontrib><creatorcontrib>Shikanov, Sergey A</creatorcontrib><creatorcontrib>Gofrit, Ofer N</creatorcontrib><creatorcontrib>Thong, Alan E</creatorcontrib><creatorcontrib>Albala, David M</creatorcontrib><creatorcontrib>Sun, Leon</creatorcontrib><creatorcontrib>Cronin, Angel</creatorcontrib><creatorcontrib>Vickers, Andrew J</creatorcontrib><creatorcontrib>Karakiewicz, Pierre I</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European urology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lughezzani, Giovanni</au><au>Zorn, Kevin C</au><au>Budäus, Lars</au><au>Sun, Maxine</au><au>Lee, David I</au><au>Shalhav, Arieh L</au><au>Zagaya, Gregory P</au><au>Shikanov, Sergey A</au><au>Gofrit, Ofer N</au><au>Thong, Alan E</au><au>Albala, David M</au><au>Sun, Leon</au><au>Cronin, Angel</au><au>Vickers, Andrew J</au><au>Karakiewicz, Pierre I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Three Different Tools for Prediction of Seminal Vesicle Invasion at Radical Prostatectomy</atitle><jtitle>European urology</jtitle><addtitle>Eur Urol</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>62</volume><issue>4</issue><spage>590</spage><epage>596</epage><pages>590-596</pages><issn>0302-2838</issn><eissn>1873-7560</eissn><coden>EUURAV</coden><abstract>Abstract Background Statistical prediction tools are increasingly common, but there is considerable disagreement about how they should be evaluated. Three tools—Partin tables, the European Society for Urological Oncology (ESUO) criteria, and the Gallina nomogram—have been proposed for the prediction of seminal vesicle invasion (SVI) in patients with clinically localized prostate cancer who are candidates for a radical prostatectomy. Objectives Using different statistical methods, we aimed to determine which of these tools should be used to predict SVI. Design, settings, and participants The independent validation cohort consisted of 2584 patients treated surgically for clinically localized prostate cancer at four North American tertiary care centers between 2002 and 2007. Interventions Robot-assisted laparoscopic radical prostatectomy. Outcome measurements and statistical analysis Primary outcome was the presence of SVI. Traditional (area under the receiver operating characteristic [ROC] curve, calibration plots, the Brier score, sensitivity and specificity, positive and negative predictive value) and novel (decision curve analysis and predictiveness curves) statistical methods quantified the predictive abilities of the three models. Results and limitations Traditional statistical methods (ie, ROC plots and Brier scores) could not clearly determine which one of the three SVI prediction tools should be preferred. For example, ROC plots and Brier scores seemed biased against the binary decision tool (ESUO criteria) and gave discordant results for the continuous predictions of the Partin tables and the Gallina nomogram. The results of the calibration plots were discordant with those of the ROC plots. Conversely, the decision curve indicated that the Partin tables represent the best strategy for stratifying the risk of SVI, resulting in the highest net benefit within the whole range of threshold probabilities. Conclusions When predicting SVI, surgeons should prefer the Partin tables over the ESUO criteria and the Gallina nomogram because this tool provided the highest net benefit. In contrast to traditional statistical methods, decision curve analysis gave an unambiguous result applicable to both continuous and binary models, providing an insight into clinical utility.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>22561078</pmid><doi>10.1016/j.eururo.2012.04.022</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-2838 |
ispartof | European urology, 2012-10, Vol.62 (4), p.590-596 |
issn | 0302-2838 1873-7560 |
language | eng |
recordid | cdi_proquest_miscellaneous_1037885527 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Biological and medical sciences Decision Support Techniques Gynecology. Andrology. Obstetrics Humans Laparoscopy - instrumentation Laparoscopy - methods Male Male genital diseases Medical sciences Models, Biological Models, Statistical Neoplasm Invasiveness Neoplasm Staging Nephrology. Urinary tract diseases Predictive tools Prostate Prostatectomy Prostatectomy - methods Prostatic neoplasms Prostatic Neoplasms - pathology Prostatic Neoplasms - surgery Retrospective Studies Robotics ROC Curve Seminal vesicles Seminal Vesicles - pathology Seminal Vesicles - surgery Statistics Treatment Outcome Tumors Tumors of the urinary system Urinary tract. Prostate gland Urology |
title | Comparison of Three Different Tools for Prediction of Seminal Vesicle Invasion at Radical Prostatectomy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Three%20Different%20Tools%20for%20Prediction%20of%20Seminal%20Vesicle%20Invasion%20at%20Radical%20Prostatectomy&rft.jtitle=European%20urology&rft.au=Lughezzani,%20Giovanni&rft.date=2012-10-01&rft.volume=62&rft.issue=4&rft.spage=590&rft.epage=596&rft.pages=590-596&rft.issn=0302-2838&rft.eissn=1873-7560&rft.coden=EUURAV&rft_id=info:doi/10.1016/j.eururo.2012.04.022&rft_dat=%3Cproquest_cross%3E1037885527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037885527&rft_id=info:pmid/22561078&rft_els_id=S0302283812004885&rfr_iscdi=true |