Gene Expression Signatures Defining Fundamental Biological Processes in Pluripotent, Early, and Late Differentiated Embryonic Stem Cells

Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cells and development 2012-09, Vol.21 (13), p.2471-2484
Hauptverfasser: Gaspar, John Antonydas, Doss, Michael Xavier, Winkler, Johannes, Wagh, Vilas, Hescheler, Jürgen, Kolde, Raivo, Vilo, Jaak, Schulz, Herbert, Sachinidis, Agapios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2484
container_issue 13
container_start_page 2471
container_title Stem cells and development
container_volume 21
creator Gaspar, John Antonydas
Doss, Michael Xavier
Winkler, Johannes
Wagh, Vilas
Hescheler, Jürgen
Kolde, Raivo
Vilo, Jaak
Schulz, Herbert
Sachinidis, Agapios
description Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16 , a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.
doi_str_mv 10.1089/scd.2011.0637
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1037654569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1037654569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-3816c22f359928cd4f24bb128159c13056dadc8ed11211372f2b1c4eccdbb5e43</originalsourceid><addsrcrecordid>eNqFkD1v2zAQhomiRex8jF0Ljh0il58SNbaO4xYwkABJZoEiTwYLiXRJCaj_QX92KNjpmol3vIcvDw9CnylZUaLqb8nYFSOUrkjJqw9oSaWsCiW5-DjXoio4U9UCXab0mxBWMiUu0IIxwYgkaon-bcED3vw9REjJBY-f3N7rccotvoPOeef3-H7yVg_gR93jHy70Ye9MLh9jMPlVJp3Hj_0U3SGMmbrFGx374y3W3uKdHgHfua6DmEcudxZvhjYeg3cGP40w4DX0fbpGnzrdJ7g5n1fo5X7zvP5Z7B62v9bfd4XhVTkWXNHSMNZxWddMGSs6JtqWMkVlbSgnsrTaGgWWUkYpr1jHWmoEGGPbVoLgV-jrKfcQw58J0tgMLpm8gfYQptRQkv-RQpZ1RosTamJIKULXHKIbdDxmqJnlN1l-M8tvZvmZ_3KOntoB7H_6zXYG-AmYr7X3vYMW4vhO7CtBEpLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037654569</pqid></control><display><type>article</type><title>Gene Expression Signatures Defining Fundamental Biological Processes in Pluripotent, Early, and Late Differentiated Embryonic Stem Cells</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Gaspar, John Antonydas ; Doss, Michael Xavier ; Winkler, Johannes ; Wagh, Vilas ; Hescheler, Jürgen ; Kolde, Raivo ; Vilo, Jaak ; Schulz, Herbert ; Sachinidis, Agapios</creator><creatorcontrib>Gaspar, John Antonydas ; Doss, Michael Xavier ; Winkler, Johannes ; Wagh, Vilas ; Hescheler, Jürgen ; Kolde, Raivo ; Vilo, Jaak ; Schulz, Herbert ; Sachinidis, Agapios</creatorcontrib><description>Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16 , a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.</description><identifier>ISSN: 1547-3287</identifier><identifier>EISSN: 1557-8534</identifier><identifier>DOI: 10.1089/scd.2011.0637</identifier><identifier>PMID: 22420508</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Biomarkers - metabolism ; Cell Culture Techniques ; Cell Differentiation ; Embryonic Development ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; Gene Expression Regulation, Developmental ; Germ Layers - cytology ; Germ Layers - metabolism ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Mice ; Nanog Homeobox Protein ; Octamer Transcription Factor-3 - genetics ; Octamer Transcription Factor-3 - metabolism ; Oligonucleotide Array Sequence Analysis ; Original Research Reports ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - metabolism ; Principal Component Analysis ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Signal Transduction ; Time Factors ; Transcriptome</subject><ispartof>Stem cells and development, 2012-09, Vol.21 (13), p.2471-2484</ispartof><rights>2012, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-3816c22f359928cd4f24bb128159c13056dadc8ed11211372f2b1c4eccdbb5e43</citedby><cites>FETCH-LOGICAL-c376t-3816c22f359928cd4f24bb128159c13056dadc8ed11211372f2b1c4eccdbb5e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22420508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaspar, John Antonydas</creatorcontrib><creatorcontrib>Doss, Michael Xavier</creatorcontrib><creatorcontrib>Winkler, Johannes</creatorcontrib><creatorcontrib>Wagh, Vilas</creatorcontrib><creatorcontrib>Hescheler, Jürgen</creatorcontrib><creatorcontrib>Kolde, Raivo</creatorcontrib><creatorcontrib>Vilo, Jaak</creatorcontrib><creatorcontrib>Schulz, Herbert</creatorcontrib><creatorcontrib>Sachinidis, Agapios</creatorcontrib><title>Gene Expression Signatures Defining Fundamental Biological Processes in Pluripotent, Early, and Late Differentiated Embryonic Stem Cells</title><title>Stem cells and development</title><addtitle>Stem Cells Dev</addtitle><description>Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16 , a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.</description><subject>Animals</subject><subject>Biomarkers - metabolism</subject><subject>Cell Culture Techniques</subject><subject>Cell Differentiation</subject><subject>Embryonic Development</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Germ Layers - cytology</subject><subject>Germ Layers - metabolism</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Mice</subject><subject>Nanog Homeobox Protein</subject><subject>Octamer Transcription Factor-3 - genetics</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Original Research Reports</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Principal Component Analysis</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Signal Transduction</subject><subject>Time Factors</subject><subject>Transcriptome</subject><issn>1547-3287</issn><issn>1557-8534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1v2zAQhomiRex8jF0Ljh0il58SNbaO4xYwkABJZoEiTwYLiXRJCaj_QX92KNjpmol3vIcvDw9CnylZUaLqb8nYFSOUrkjJqw9oSaWsCiW5-DjXoio4U9UCXab0mxBWMiUu0IIxwYgkaon-bcED3vw9REjJBY-f3N7rccotvoPOeef3-H7yVg_gR93jHy70Ye9MLh9jMPlVJp3Hj_0U3SGMmbrFGx374y3W3uKdHgHfua6DmEcudxZvhjYeg3cGP40w4DX0fbpGnzrdJ7g5n1fo5X7zvP5Z7B62v9bfd4XhVTkWXNHSMNZxWddMGSs6JtqWMkVlbSgnsrTaGgWWUkYpr1jHWmoEGGPbVoLgV-jrKfcQw58J0tgMLpm8gfYQptRQkv-RQpZ1RosTamJIKULXHKIbdDxmqJnlN1l-M8tvZvmZ_3KOntoB7H_6zXYG-AmYr7X3vYMW4vhO7CtBEpLM</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Gaspar, John Antonydas</creator><creator>Doss, Michael Xavier</creator><creator>Winkler, Johannes</creator><creator>Wagh, Vilas</creator><creator>Hescheler, Jürgen</creator><creator>Kolde, Raivo</creator><creator>Vilo, Jaak</creator><creator>Schulz, Herbert</creator><creator>Sachinidis, Agapios</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120901</creationdate><title>Gene Expression Signatures Defining Fundamental Biological Processes in Pluripotent, Early, and Late Differentiated Embryonic Stem Cells</title><author>Gaspar, John Antonydas ; Doss, Michael Xavier ; Winkler, Johannes ; Wagh, Vilas ; Hescheler, Jürgen ; Kolde, Raivo ; Vilo, Jaak ; Schulz, Herbert ; Sachinidis, Agapios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-3816c22f359928cd4f24bb128159c13056dadc8ed11211372f2b1c4eccdbb5e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biomarkers - metabolism</topic><topic>Cell Culture Techniques</topic><topic>Cell Differentiation</topic><topic>Embryonic Development</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Germ Layers - cytology</topic><topic>Germ Layers - metabolism</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Mice</topic><topic>Nanog Homeobox Protein</topic><topic>Octamer Transcription Factor-3 - genetics</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Original Research Reports</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Principal Component Analysis</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Signal Transduction</topic><topic>Time Factors</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaspar, John Antonydas</creatorcontrib><creatorcontrib>Doss, Michael Xavier</creatorcontrib><creatorcontrib>Winkler, Johannes</creatorcontrib><creatorcontrib>Wagh, Vilas</creatorcontrib><creatorcontrib>Hescheler, Jürgen</creatorcontrib><creatorcontrib>Kolde, Raivo</creatorcontrib><creatorcontrib>Vilo, Jaak</creatorcontrib><creatorcontrib>Schulz, Herbert</creatorcontrib><creatorcontrib>Sachinidis, Agapios</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Stem cells and development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaspar, John Antonydas</au><au>Doss, Michael Xavier</au><au>Winkler, Johannes</au><au>Wagh, Vilas</au><au>Hescheler, Jürgen</au><au>Kolde, Raivo</au><au>Vilo, Jaak</au><au>Schulz, Herbert</au><au>Sachinidis, Agapios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Expression Signatures Defining Fundamental Biological Processes in Pluripotent, Early, and Late Differentiated Embryonic Stem Cells</atitle><jtitle>Stem cells and development</jtitle><addtitle>Stem Cells Dev</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>21</volume><issue>13</issue><spage>2471</spage><epage>2484</epage><pages>2471-2484</pages><issn>1547-3287</issn><eissn>1557-8534</eissn><abstract>Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16 , a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>22420508</pmid><doi>10.1089/scd.2011.0637</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1547-3287
ispartof Stem cells and development, 2012-09, Vol.21 (13), p.2471-2484
issn 1547-3287
1557-8534
language eng
recordid cdi_proquest_miscellaneous_1037654569
source MEDLINE; Alma/SFX Local Collection
subjects Animals
Biomarkers - metabolism
Cell Culture Techniques
Cell Differentiation
Embryonic Development
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Gene Expression Regulation, Developmental
Germ Layers - cytology
Germ Layers - metabolism
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Mice
Nanog Homeobox Protein
Octamer Transcription Factor-3 - genetics
Octamer Transcription Factor-3 - metabolism
Oligonucleotide Array Sequence Analysis
Original Research Reports
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Principal Component Analysis
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Signal Transduction
Time Factors
Transcriptome
title Gene Expression Signatures Defining Fundamental Biological Processes in Pluripotent, Early, and Late Differentiated Embryonic Stem Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Expression%20Signatures%20Defining%20Fundamental%20Biological%20Processes%20in%20Pluripotent,%20Early,%20and%20Late%20Differentiated%20Embryonic%20Stem%20Cells&rft.jtitle=Stem%20cells%20and%20development&rft.au=Gaspar,%20John%20Antonydas&rft.date=2012-09-01&rft.volume=21&rft.issue=13&rft.spage=2471&rft.epage=2484&rft.pages=2471-2484&rft.issn=1547-3287&rft.eissn=1557-8534&rft_id=info:doi/10.1089/scd.2011.0637&rft_dat=%3Cproquest_cross%3E1037654569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037654569&rft_id=info:pmid/22420508&rfr_iscdi=true