Gene Expression Signatures Defining Fundamental Biological Processes in Pluripotent, Early, and Late Differentiated Embryonic Stem Cells
Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the...
Gespeichert in:
Veröffentlicht in: | Stem cells and development 2012-09, Vol.21 (13), p.2471-2484 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2484 |
---|---|
container_issue | 13 |
container_start_page | 2471 |
container_title | Stem cells and development |
container_volume | 21 |
creator | Gaspar, John Antonydas Doss, Michael Xavier Winkler, Johannes Wagh, Vilas Hescheler, Jürgen Kolde, Raivo Vilo, Jaak Schulz, Herbert Sachinidis, Agapios |
description | Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of
MageB16
, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed. |
doi_str_mv | 10.1089/scd.2011.0637 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1037654569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1037654569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-3816c22f359928cd4f24bb128159c13056dadc8ed11211372f2b1c4eccdbb5e43</originalsourceid><addsrcrecordid>eNqFkD1v2zAQhomiRex8jF0Ljh0il58SNbaO4xYwkABJZoEiTwYLiXRJCaj_QX92KNjpmol3vIcvDw9CnylZUaLqb8nYFSOUrkjJqw9oSaWsCiW5-DjXoio4U9UCXab0mxBWMiUu0IIxwYgkaon-bcED3vw9REjJBY-f3N7rccotvoPOeef3-H7yVg_gR93jHy70Ye9MLh9jMPlVJp3Hj_0U3SGMmbrFGx374y3W3uKdHgHfua6DmEcudxZvhjYeg3cGP40w4DX0fbpGnzrdJ7g5n1fo5X7zvP5Z7B62v9bfd4XhVTkWXNHSMNZxWddMGSs6JtqWMkVlbSgnsrTaGgWWUkYpr1jHWmoEGGPbVoLgV-jrKfcQw58J0tgMLpm8gfYQptRQkv-RQpZ1RosTamJIKULXHKIbdDxmqJnlN1l-M8tvZvmZ_3KOntoB7H_6zXYG-AmYr7X3vYMW4vhO7CtBEpLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037654569</pqid></control><display><type>article</type><title>Gene Expression Signatures Defining Fundamental Biological Processes in Pluripotent, Early, and Late Differentiated Embryonic Stem Cells</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Gaspar, John Antonydas ; Doss, Michael Xavier ; Winkler, Johannes ; Wagh, Vilas ; Hescheler, Jürgen ; Kolde, Raivo ; Vilo, Jaak ; Schulz, Herbert ; Sachinidis, Agapios</creator><creatorcontrib>Gaspar, John Antonydas ; Doss, Michael Xavier ; Winkler, Johannes ; Wagh, Vilas ; Hescheler, Jürgen ; Kolde, Raivo ; Vilo, Jaak ; Schulz, Herbert ; Sachinidis, Agapios</creatorcontrib><description>Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of
MageB16
, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.</description><identifier>ISSN: 1547-3287</identifier><identifier>EISSN: 1557-8534</identifier><identifier>DOI: 10.1089/scd.2011.0637</identifier><identifier>PMID: 22420508</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Biomarkers - metabolism ; Cell Culture Techniques ; Cell Differentiation ; Embryonic Development ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; Gene Expression Regulation, Developmental ; Germ Layers - cytology ; Germ Layers - metabolism ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Mice ; Nanog Homeobox Protein ; Octamer Transcription Factor-3 - genetics ; Octamer Transcription Factor-3 - metabolism ; Oligonucleotide Array Sequence Analysis ; Original Research Reports ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - metabolism ; Principal Component Analysis ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Signal Transduction ; Time Factors ; Transcriptome</subject><ispartof>Stem cells and development, 2012-09, Vol.21 (13), p.2471-2484</ispartof><rights>2012, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-3816c22f359928cd4f24bb128159c13056dadc8ed11211372f2b1c4eccdbb5e43</citedby><cites>FETCH-LOGICAL-c376t-3816c22f359928cd4f24bb128159c13056dadc8ed11211372f2b1c4eccdbb5e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22420508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaspar, John Antonydas</creatorcontrib><creatorcontrib>Doss, Michael Xavier</creatorcontrib><creatorcontrib>Winkler, Johannes</creatorcontrib><creatorcontrib>Wagh, Vilas</creatorcontrib><creatorcontrib>Hescheler, Jürgen</creatorcontrib><creatorcontrib>Kolde, Raivo</creatorcontrib><creatorcontrib>Vilo, Jaak</creatorcontrib><creatorcontrib>Schulz, Herbert</creatorcontrib><creatorcontrib>Sachinidis, Agapios</creatorcontrib><title>Gene Expression Signatures Defining Fundamental Biological Processes in Pluripotent, Early, and Late Differentiated Embryonic Stem Cells</title><title>Stem cells and development</title><addtitle>Stem Cells Dev</addtitle><description>Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of
MageB16
, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.</description><subject>Animals</subject><subject>Biomarkers - metabolism</subject><subject>Cell Culture Techniques</subject><subject>Cell Differentiation</subject><subject>Embryonic Development</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Germ Layers - cytology</subject><subject>Germ Layers - metabolism</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Mice</subject><subject>Nanog Homeobox Protein</subject><subject>Octamer Transcription Factor-3 - genetics</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Original Research Reports</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Principal Component Analysis</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Signal Transduction</subject><subject>Time Factors</subject><subject>Transcriptome</subject><issn>1547-3287</issn><issn>1557-8534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1v2zAQhomiRex8jF0Ljh0il58SNbaO4xYwkABJZoEiTwYLiXRJCaj_QX92KNjpmol3vIcvDw9CnylZUaLqb8nYFSOUrkjJqw9oSaWsCiW5-DjXoio4U9UCXab0mxBWMiUu0IIxwYgkaon-bcED3vw9REjJBY-f3N7rccotvoPOeef3-H7yVg_gR93jHy70Ye9MLh9jMPlVJp3Hj_0U3SGMmbrFGx374y3W3uKdHgHfua6DmEcudxZvhjYeg3cGP40w4DX0fbpGnzrdJ7g5n1fo5X7zvP5Z7B62v9bfd4XhVTkWXNHSMNZxWddMGSs6JtqWMkVlbSgnsrTaGgWWUkYpr1jHWmoEGGPbVoLgV-jrKfcQw58J0tgMLpm8gfYQptRQkv-RQpZ1RosTamJIKULXHKIbdDxmqJnlN1l-M8tvZvmZ_3KOntoB7H_6zXYG-AmYr7X3vYMW4vhO7CtBEpLM</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Gaspar, John Antonydas</creator><creator>Doss, Michael Xavier</creator><creator>Winkler, Johannes</creator><creator>Wagh, Vilas</creator><creator>Hescheler, Jürgen</creator><creator>Kolde, Raivo</creator><creator>Vilo, Jaak</creator><creator>Schulz, Herbert</creator><creator>Sachinidis, Agapios</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120901</creationdate><title>Gene Expression Signatures Defining Fundamental Biological Processes in Pluripotent, Early, and Late Differentiated Embryonic Stem Cells</title><author>Gaspar, John Antonydas ; Doss, Michael Xavier ; Winkler, Johannes ; Wagh, Vilas ; Hescheler, Jürgen ; Kolde, Raivo ; Vilo, Jaak ; Schulz, Herbert ; Sachinidis, Agapios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-3816c22f359928cd4f24bb128159c13056dadc8ed11211372f2b1c4eccdbb5e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biomarkers - metabolism</topic><topic>Cell Culture Techniques</topic><topic>Cell Differentiation</topic><topic>Embryonic Development</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Germ Layers - cytology</topic><topic>Germ Layers - metabolism</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Mice</topic><topic>Nanog Homeobox Protein</topic><topic>Octamer Transcription Factor-3 - genetics</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Original Research Reports</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Principal Component Analysis</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Signal Transduction</topic><topic>Time Factors</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaspar, John Antonydas</creatorcontrib><creatorcontrib>Doss, Michael Xavier</creatorcontrib><creatorcontrib>Winkler, Johannes</creatorcontrib><creatorcontrib>Wagh, Vilas</creatorcontrib><creatorcontrib>Hescheler, Jürgen</creatorcontrib><creatorcontrib>Kolde, Raivo</creatorcontrib><creatorcontrib>Vilo, Jaak</creatorcontrib><creatorcontrib>Schulz, Herbert</creatorcontrib><creatorcontrib>Sachinidis, Agapios</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Stem cells and development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaspar, John Antonydas</au><au>Doss, Michael Xavier</au><au>Winkler, Johannes</au><au>Wagh, Vilas</au><au>Hescheler, Jürgen</au><au>Kolde, Raivo</au><au>Vilo, Jaak</au><au>Schulz, Herbert</au><au>Sachinidis, Agapios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Expression Signatures Defining Fundamental Biological Processes in Pluripotent, Early, and Late Differentiated Embryonic Stem Cells</atitle><jtitle>Stem cells and development</jtitle><addtitle>Stem Cells Dev</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>21</volume><issue>13</issue><spage>2471</spage><epage>2484</epage><pages>2471-2484</pages><issn>1547-3287</issn><eissn>1557-8534</eissn><abstract>Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of
MageB16
, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>22420508</pmid><doi>10.1089/scd.2011.0637</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1547-3287 |
ispartof | Stem cells and development, 2012-09, Vol.21 (13), p.2471-2484 |
issn | 1547-3287 1557-8534 |
language | eng |
recordid | cdi_proquest_miscellaneous_1037654569 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Animals Biomarkers - metabolism Cell Culture Techniques Cell Differentiation Embryonic Development Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Gene Expression Regulation, Developmental Germ Layers - cytology Germ Layers - metabolism Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Mice Nanog Homeobox Protein Octamer Transcription Factor-3 - genetics Octamer Transcription Factor-3 - metabolism Oligonucleotide Array Sequence Analysis Original Research Reports Pluripotent Stem Cells - cytology Pluripotent Stem Cells - metabolism Principal Component Analysis RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Signal Transduction Time Factors Transcriptome |
title | Gene Expression Signatures Defining Fundamental Biological Processes in Pluripotent, Early, and Late Differentiated Embryonic Stem Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Expression%20Signatures%20Defining%20Fundamental%20Biological%20Processes%20in%20Pluripotent,%20Early,%20and%20Late%20Differentiated%20Embryonic%20Stem%20Cells&rft.jtitle=Stem%20cells%20and%20development&rft.au=Gaspar,%20John%20Antonydas&rft.date=2012-09-01&rft.volume=21&rft.issue=13&rft.spage=2471&rft.epage=2484&rft.pages=2471-2484&rft.issn=1547-3287&rft.eissn=1557-8534&rft_id=info:doi/10.1089/scd.2011.0637&rft_dat=%3Cproquest_cross%3E1037654569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037654569&rft_id=info:pmid/22420508&rfr_iscdi=true |