Induction of angiogenesis and osteogenesis in surgically revascularized frozen bone allografts by sustained delivery of FGF-2 and VEGF

Large conventional bone allografts are susceptible to fracture and nonunion due to incomplete revascularization and insufficient bone remodeling. We aim to improve bone blood flow and bone remodeling using surgical angiogenesis combined with delivery of fibroblast growth factor (FGF‐2) and vascular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of orthopaedic research 2012-10, Vol.30 (10), p.1556-1562
Hauptverfasser: Willems, Wouter F., Larsen, Mikko, Friedrich, Patricia F., Shogren, Kristen L., Bishop, Allen T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1562
container_issue 10
container_start_page 1556
container_title Journal of orthopaedic research
container_volume 30
creator Willems, Wouter F.
Larsen, Mikko
Friedrich, Patricia F.
Shogren, Kristen L.
Bishop, Allen T.
description Large conventional bone allografts are susceptible to fracture and nonunion due to incomplete revascularization and insufficient bone remodeling. We aim to improve bone blood flow and bone remodeling using surgical angiogenesis combined with delivery of fibroblast growth factor (FGF‐2) and vascular endothelial growth factor (VEGF). Frozen femoral allografts were heterotopically transplanted in a rat model. The saphenous arteriovenous bundle was implanted within the graft medullary canal. Simultaneously, biodegradable microspheres containing phosphate buffered saline (control), FGF‐2, VEGF, or FGF‐2 + VEGF were placed within the graft. Rats were sacrificed at 4 and 18 weeks. Angiogenesis was determined by quantifying bone capillary density and measuring cortical bone blood flow. Bone remodeling was assessed by histology, histomorphometry, and alkaline phosphatase activity. VEGF significantly increased angiogenesis and bone remodeling at 4 and 18 weeks. FGF‐2 did not elicit a strong angiogenic or osteogenic response. No synergistic effect of FGF‐2 + VEGF was observed. VEGF delivered in microspheres had superior long‐term effect on angiogenesis and osteogenesis in surgically revascularized frozen bone structural allografts as compared to FGF‐2 or FGF‐2 + VEGF. Continuous and localized delivery of VEGF by microencapsulation has promising clinical potential by inducing a durable angiogenic and osteogenic response in frozen allografts. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1556–1562, 2012
doi_str_mv 10.1002/jor.22112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1036882332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1036882332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4642-5c1360da65a70ffb1993d1fd79eb0a052464c144d9eeb69532931c0d142ef1433</originalsourceid><addsrcrecordid>eNp1kc1O3DAUha2qVRloF32Byst2EfBPYk-WLWICFQIJ9Yed5djXI9OMTe2ENjxAn7uGgdl1Zdn3O-foHiP0jpJDSgg7uonpkDFK2Qu0oE1TVw2T1y_RgkguKsKE2EP7Od8QQiRly9doj7FayIaRBfp7FuxkRh8Djg7rsPZxDQGyz-Viccwj7B58wHlKa2_0MMw4wZ3OZhp08vdgsUvxHgLuYwBc5nGdtBsz7ueiyaP2oTAWBn8HaX6IWnWrij1mfD_pVm_QK6eHDG-fzgP0bXXy9fi0Or_szo4_nVemFjWrGkO5IFaLRkviXE_bllvqrGyhJ5o0Za3a0Lq2LUAv2oazllNDLK0ZOFpzfoA-bH1vU_w1QR7VxmcDw6ADxCkrSrhYLhnnrKAft6hJMecETt0mv9FpLpB6qF2V2tVj7YV9_2Q79RuwO_K55wIcbYHffoD5_07qy-XVs2W1VfjyBX92Cp1-KiG5bNSPi05dXC27689SKMn_ASSRnHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1036882332</pqid></control><display><type>article</type><title>Induction of angiogenesis and osteogenesis in surgically revascularized frozen bone allografts by sustained delivery of FGF-2 and VEGF</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Willems, Wouter F. ; Larsen, Mikko ; Friedrich, Patricia F. ; Shogren, Kristen L. ; Bishop, Allen T.</creator><creatorcontrib>Willems, Wouter F. ; Larsen, Mikko ; Friedrich, Patricia F. ; Shogren, Kristen L. ; Bishop, Allen T.</creatorcontrib><description>Large conventional bone allografts are susceptible to fracture and nonunion due to incomplete revascularization and insufficient bone remodeling. We aim to improve bone blood flow and bone remodeling using surgical angiogenesis combined with delivery of fibroblast growth factor (FGF‐2) and vascular endothelial growth factor (VEGF). Frozen femoral allografts were heterotopically transplanted in a rat model. The saphenous arteriovenous bundle was implanted within the graft medullary canal. Simultaneously, biodegradable microspheres containing phosphate buffered saline (control), FGF‐2, VEGF, or FGF‐2 + VEGF were placed within the graft. Rats were sacrificed at 4 and 18 weeks. Angiogenesis was determined by quantifying bone capillary density and measuring cortical bone blood flow. Bone remodeling was assessed by histology, histomorphometry, and alkaline phosphatase activity. VEGF significantly increased angiogenesis and bone remodeling at 4 and 18 weeks. FGF‐2 did not elicit a strong angiogenic or osteogenic response. No synergistic effect of FGF‐2 + VEGF was observed. VEGF delivered in microspheres had superior long‐term effect on angiogenesis and osteogenesis in surgically revascularized frozen bone structural allografts as compared to FGF‐2 or FGF‐2 + VEGF. Continuous and localized delivery of VEGF by microencapsulation has promising clinical potential by inducing a durable angiogenic and osteogenic response in frozen allografts. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1556–1562, 2012</description><identifier>ISSN: 0736-0266</identifier><identifier>EISSN: 1554-527X</identifier><identifier>DOI: 10.1002/jor.22112</identifier><identifier>PMID: 22467520</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alkaline Phosphatase - metabolism ; allograft ; Animals ; bone ; Bone Transplantation ; Capillaries - drug effects ; Drug Compounding ; Female ; Femur - blood supply ; Femur - enzymology ; Femur - transplantation ; FGF-2 ; Fibroblast Growth Factor 2 - administration &amp; dosage ; microspheres ; Neovascularization, Physiologic - drug effects ; Osteocytes - drug effects ; Osteogenesis - drug effects ; Rats ; Regional Blood Flow - drug effects ; Transplantation, Homologous ; Vascular Endothelial Growth Factor A - administration &amp; dosage ; Vascular Surgical Procedures ; VEGF</subject><ispartof>Journal of orthopaedic research, 2012-10, Vol.30 (10), p.1556-1562</ispartof><rights>Copyright © 2012 Orthopaedic Research Society</rights><rights>Copyright © 2012 Orthopaedic Research Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4642-5c1360da65a70ffb1993d1fd79eb0a052464c144d9eeb69532931c0d142ef1433</citedby><cites>FETCH-LOGICAL-c4642-5c1360da65a70ffb1993d1fd79eb0a052464c144d9eeb69532931c0d142ef1433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjor.22112$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjor.22112$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22467520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willems, Wouter F.</creatorcontrib><creatorcontrib>Larsen, Mikko</creatorcontrib><creatorcontrib>Friedrich, Patricia F.</creatorcontrib><creatorcontrib>Shogren, Kristen L.</creatorcontrib><creatorcontrib>Bishop, Allen T.</creatorcontrib><title>Induction of angiogenesis and osteogenesis in surgically revascularized frozen bone allografts by sustained delivery of FGF-2 and VEGF</title><title>Journal of orthopaedic research</title><addtitle>J. Orthop. Res</addtitle><description>Large conventional bone allografts are susceptible to fracture and nonunion due to incomplete revascularization and insufficient bone remodeling. We aim to improve bone blood flow and bone remodeling using surgical angiogenesis combined with delivery of fibroblast growth factor (FGF‐2) and vascular endothelial growth factor (VEGF). Frozen femoral allografts were heterotopically transplanted in a rat model. The saphenous arteriovenous bundle was implanted within the graft medullary canal. Simultaneously, biodegradable microspheres containing phosphate buffered saline (control), FGF‐2, VEGF, or FGF‐2 + VEGF were placed within the graft. Rats were sacrificed at 4 and 18 weeks. Angiogenesis was determined by quantifying bone capillary density and measuring cortical bone blood flow. Bone remodeling was assessed by histology, histomorphometry, and alkaline phosphatase activity. VEGF significantly increased angiogenesis and bone remodeling at 4 and 18 weeks. FGF‐2 did not elicit a strong angiogenic or osteogenic response. No synergistic effect of FGF‐2 + VEGF was observed. VEGF delivered in microspheres had superior long‐term effect on angiogenesis and osteogenesis in surgically revascularized frozen bone structural allografts as compared to FGF‐2 or FGF‐2 + VEGF. Continuous and localized delivery of VEGF by microencapsulation has promising clinical potential by inducing a durable angiogenic and osteogenic response in frozen allografts. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1556–1562, 2012</description><subject>Alkaline Phosphatase - metabolism</subject><subject>allograft</subject><subject>Animals</subject><subject>bone</subject><subject>Bone Transplantation</subject><subject>Capillaries - drug effects</subject><subject>Drug Compounding</subject><subject>Female</subject><subject>Femur - blood supply</subject><subject>Femur - enzymology</subject><subject>Femur - transplantation</subject><subject>FGF-2</subject><subject>Fibroblast Growth Factor 2 - administration &amp; dosage</subject><subject>microspheres</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Osteocytes - drug effects</subject><subject>Osteogenesis - drug effects</subject><subject>Rats</subject><subject>Regional Blood Flow - drug effects</subject><subject>Transplantation, Homologous</subject><subject>Vascular Endothelial Growth Factor A - administration &amp; dosage</subject><subject>Vascular Surgical Procedures</subject><subject>VEGF</subject><issn>0736-0266</issn><issn>1554-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1O3DAUha2qVRloF32Byst2EfBPYk-WLWICFQIJ9Yed5djXI9OMTe2ENjxAn7uGgdl1Zdn3O-foHiP0jpJDSgg7uonpkDFK2Qu0oE1TVw2T1y_RgkguKsKE2EP7Od8QQiRly9doj7FayIaRBfp7FuxkRh8Djg7rsPZxDQGyz-Viccwj7B58wHlKa2_0MMw4wZ3OZhp08vdgsUvxHgLuYwBc5nGdtBsz7ueiyaP2oTAWBn8HaX6IWnWrij1mfD_pVm_QK6eHDG-fzgP0bXXy9fi0Or_szo4_nVemFjWrGkO5IFaLRkviXE_bllvqrGyhJ5o0Za3a0Lq2LUAv2oazllNDLK0ZOFpzfoA-bH1vU_w1QR7VxmcDw6ADxCkrSrhYLhnnrKAft6hJMecETt0mv9FpLpB6qF2V2tVj7YV9_2Q79RuwO_K55wIcbYHffoD5_07qy-XVs2W1VfjyBX92Cp1-KiG5bNSPi05dXC27689SKMn_ASSRnHg</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Willems, Wouter F.</creator><creator>Larsen, Mikko</creator><creator>Friedrich, Patricia F.</creator><creator>Shogren, Kristen L.</creator><creator>Bishop, Allen T.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201210</creationdate><title>Induction of angiogenesis and osteogenesis in surgically revascularized frozen bone allografts by sustained delivery of FGF-2 and VEGF</title><author>Willems, Wouter F. ; Larsen, Mikko ; Friedrich, Patricia F. ; Shogren, Kristen L. ; Bishop, Allen T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4642-5c1360da65a70ffb1993d1fd79eb0a052464c144d9eeb69532931c0d142ef1433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alkaline Phosphatase - metabolism</topic><topic>allograft</topic><topic>Animals</topic><topic>bone</topic><topic>Bone Transplantation</topic><topic>Capillaries - drug effects</topic><topic>Drug Compounding</topic><topic>Female</topic><topic>Femur - blood supply</topic><topic>Femur - enzymology</topic><topic>Femur - transplantation</topic><topic>FGF-2</topic><topic>Fibroblast Growth Factor 2 - administration &amp; dosage</topic><topic>microspheres</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Osteocytes - drug effects</topic><topic>Osteogenesis - drug effects</topic><topic>Rats</topic><topic>Regional Blood Flow - drug effects</topic><topic>Transplantation, Homologous</topic><topic>Vascular Endothelial Growth Factor A - administration &amp; dosage</topic><topic>Vascular Surgical Procedures</topic><topic>VEGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willems, Wouter F.</creatorcontrib><creatorcontrib>Larsen, Mikko</creatorcontrib><creatorcontrib>Friedrich, Patricia F.</creatorcontrib><creatorcontrib>Shogren, Kristen L.</creatorcontrib><creatorcontrib>Bishop, Allen T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of orthopaedic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willems, Wouter F.</au><au>Larsen, Mikko</au><au>Friedrich, Patricia F.</au><au>Shogren, Kristen L.</au><au>Bishop, Allen T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction of angiogenesis and osteogenesis in surgically revascularized frozen bone allografts by sustained delivery of FGF-2 and VEGF</atitle><jtitle>Journal of orthopaedic research</jtitle><addtitle>J. Orthop. Res</addtitle><date>2012-10</date><risdate>2012</risdate><volume>30</volume><issue>10</issue><spage>1556</spage><epage>1562</epage><pages>1556-1562</pages><issn>0736-0266</issn><eissn>1554-527X</eissn><abstract>Large conventional bone allografts are susceptible to fracture and nonunion due to incomplete revascularization and insufficient bone remodeling. We aim to improve bone blood flow and bone remodeling using surgical angiogenesis combined with delivery of fibroblast growth factor (FGF‐2) and vascular endothelial growth factor (VEGF). Frozen femoral allografts were heterotopically transplanted in a rat model. The saphenous arteriovenous bundle was implanted within the graft medullary canal. Simultaneously, biodegradable microspheres containing phosphate buffered saline (control), FGF‐2, VEGF, or FGF‐2 + VEGF were placed within the graft. Rats were sacrificed at 4 and 18 weeks. Angiogenesis was determined by quantifying bone capillary density and measuring cortical bone blood flow. Bone remodeling was assessed by histology, histomorphometry, and alkaline phosphatase activity. VEGF significantly increased angiogenesis and bone remodeling at 4 and 18 weeks. FGF‐2 did not elicit a strong angiogenic or osteogenic response. No synergistic effect of FGF‐2 + VEGF was observed. VEGF delivered in microspheres had superior long‐term effect on angiogenesis and osteogenesis in surgically revascularized frozen bone structural allografts as compared to FGF‐2 or FGF‐2 + VEGF. Continuous and localized delivery of VEGF by microencapsulation has promising clinical potential by inducing a durable angiogenic and osteogenic response in frozen allografts. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1556–1562, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22467520</pmid><doi>10.1002/jor.22112</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0736-0266
ispartof Journal of orthopaedic research, 2012-10, Vol.30 (10), p.1556-1562
issn 0736-0266
1554-527X
language eng
recordid cdi_proquest_miscellaneous_1036882332
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Alkaline Phosphatase - metabolism
allograft
Animals
bone
Bone Transplantation
Capillaries - drug effects
Drug Compounding
Female
Femur - blood supply
Femur - enzymology
Femur - transplantation
FGF-2
Fibroblast Growth Factor 2 - administration & dosage
microspheres
Neovascularization, Physiologic - drug effects
Osteocytes - drug effects
Osteogenesis - drug effects
Rats
Regional Blood Flow - drug effects
Transplantation, Homologous
Vascular Endothelial Growth Factor A - administration & dosage
Vascular Surgical Procedures
VEGF
title Induction of angiogenesis and osteogenesis in surgically revascularized frozen bone allografts by sustained delivery of FGF-2 and VEGF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction%20of%20angiogenesis%20and%20osteogenesis%20in%20surgically%20revascularized%20frozen%20bone%20allografts%20by%20sustained%20delivery%20of%20FGF-2%20and%20VEGF&rft.jtitle=Journal%20of%20orthopaedic%20research&rft.au=Willems,%20Wouter%20F.&rft.date=2012-10&rft.volume=30&rft.issue=10&rft.spage=1556&rft.epage=1562&rft.pages=1556-1562&rft.issn=0736-0266&rft.eissn=1554-527X&rft_id=info:doi/10.1002/jor.22112&rft_dat=%3Cproquest_cross%3E1036882332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1036882332&rft_id=info:pmid/22467520&rfr_iscdi=true