Metrics and the effective computational scientist: process, quality and communication

Recent treatments of computational knowledge worker productivity have focused upon the value the discipline brings to drug discovery using positive anecdotes. While this big picture approach provides important validation of the contributions of these knowledge workers, the impact accounts do not pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug discovery today 2012-09, Vol.17 (17-18), p.935-941
1. Verfasser: Baldwin, Eric T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 941
container_issue 17-18
container_start_page 935
container_title Drug discovery today
container_volume 17
creator Baldwin, Eric T.
description Recent treatments of computational knowledge worker productivity have focused upon the value the discipline brings to drug discovery using positive anecdotes. While this big picture approach provides important validation of the contributions of these knowledge workers, the impact accounts do not provide the granular detail that can help individuals and teams perform better. I suggest balancing the impact-focus with quantitative measures that can inform the development of scientists. Measuring the quality of work, analyzing and improving processes, and the critical evaluation of communication can provide immediate performance feedback. The introduction of quantitative measures can complement the longer term reporting of impacts on drug discovery. These metric data can document effectiveness trends and can provide a stronger foundation for the impact dialogue.
doi_str_mv 10.1016/j.drudis.2012.03.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1036880837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359644612000827</els_id><sourcerecordid>1036880837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-16e59ba9c174199324bd8597a8a7dac7b92a38b5b069be9f5b2ba5db8da8161c3</originalsourceid><addsrcrecordid>eNp90E1rFTEUgOEgiq3VfyAyG8GFM-ZjkklcCFKsChU3dh1OkjOYy3zcJplC_73pvdcuu0oWzzkJLyFvGe0YZerTrgtpCzF3nDLeUdFRyp6Rc6YH3Uot-PN6F9K0qu_VGXmV864CbqR6Sc4476lSRp6Tm19YUvS5gSU05S82OI7oS7zDxq_zfitQ4rrA1GQfcSkxl8_NPq0ec_7Y3G4wxXJ_mK163pboD_41eTHClPHN6bwgN1ff_lz-aK9_f_95-fW69cLw0jKF0jgwng09M0bw3gUtzQAahgB-cIaD0E46qoxDM0rHHcjgdADNFPPignw47q1fut0wFzvH7HGaYMF1y5ZRobSmWgyV9kfq05pzwtHuU5wh3VdkH4LanT0GtQ9BLRW29qpj704vbG7G8Dj0v2AF708AsodpTLD4uuPRKUENV7q6L0eHtcddxGQPRT2GmGpwG9b49E_-AUE4lws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1036880837</pqid></control><display><type>article</type><title>Metrics and the effective computational scientist: process, quality and communication</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Baldwin, Eric T.</creator><creatorcontrib>Baldwin, Eric T.</creatorcontrib><description>Recent treatments of computational knowledge worker productivity have focused upon the value the discipline brings to drug discovery using positive anecdotes. While this big picture approach provides important validation of the contributions of these knowledge workers, the impact accounts do not provide the granular detail that can help individuals and teams perform better. I suggest balancing the impact-focus with quantitative measures that can inform the development of scientists. Measuring the quality of work, analyzing and improving processes, and the critical evaluation of communication can provide immediate performance feedback. The introduction of quantitative measures can complement the longer term reporting of impacts on drug discovery. These metric data can document effectiveness trends and can provide a stronger foundation for the impact dialogue.</description><identifier>ISSN: 1359-6446</identifier><identifier>EISSN: 1878-5832</identifier><identifier>DOI: 10.1016/j.drudis.2012.03.001</identifier><identifier>PMID: 22406695</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Computer-Aided Design ; Drug Design ; Drug Industry - methods ; General pharmacology ; Humans ; Medical sciences ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments</subject><ispartof>Drug discovery today, 2012-09, Vol.17 (17-18), p.935-941</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-16e59ba9c174199324bd8597a8a7dac7b92a38b5b069be9f5b2ba5db8da8161c3</citedby><cites>FETCH-LOGICAL-c392t-16e59ba9c174199324bd8597a8a7dac7b92a38b5b069be9f5b2ba5db8da8161c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.drudis.2012.03.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26309268$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22406695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baldwin, Eric T.</creatorcontrib><title>Metrics and the effective computational scientist: process, quality and communication</title><title>Drug discovery today</title><addtitle>Drug Discov Today</addtitle><description>Recent treatments of computational knowledge worker productivity have focused upon the value the discipline brings to drug discovery using positive anecdotes. While this big picture approach provides important validation of the contributions of these knowledge workers, the impact accounts do not provide the granular detail that can help individuals and teams perform better. I suggest balancing the impact-focus with quantitative measures that can inform the development of scientists. Measuring the quality of work, analyzing and improving processes, and the critical evaluation of communication can provide immediate performance feedback. The introduction of quantitative measures can complement the longer term reporting of impacts on drug discovery. These metric data can document effectiveness trends and can provide a stronger foundation for the impact dialogue.</description><subject>Biological and medical sciences</subject><subject>Computer-Aided Design</subject><subject>Drug Design</subject><subject>Drug Industry - methods</subject><subject>General pharmacology</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><issn>1359-6446</issn><issn>1878-5832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1rFTEUgOEgiq3VfyAyG8GFM-ZjkklcCFKsChU3dh1OkjOYy3zcJplC_73pvdcuu0oWzzkJLyFvGe0YZerTrgtpCzF3nDLeUdFRyp6Rc6YH3Uot-PN6F9K0qu_VGXmV864CbqR6Sc4476lSRp6Tm19YUvS5gSU05S82OI7oS7zDxq_zfitQ4rrA1GQfcSkxl8_NPq0ec_7Y3G4wxXJ_mK163pboD_41eTHClPHN6bwgN1ff_lz-aK9_f_95-fW69cLw0jKF0jgwng09M0bw3gUtzQAahgB-cIaD0E46qoxDM0rHHcjgdADNFPPignw47q1fut0wFzvH7HGaYMF1y5ZRobSmWgyV9kfq05pzwtHuU5wh3VdkH4LanT0GtQ9BLRW29qpj704vbG7G8Dj0v2AF708AsodpTLD4uuPRKUENV7q6L0eHtcddxGQPRT2GmGpwG9b49E_-AUE4lws</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Baldwin, Eric T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120901</creationdate><title>Metrics and the effective computational scientist: process, quality and communication</title><author>Baldwin, Eric T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-16e59ba9c174199324bd8597a8a7dac7b92a38b5b069be9f5b2ba5db8da8161c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Computer-Aided Design</topic><topic>Drug Design</topic><topic>Drug Industry - methods</topic><topic>General pharmacology</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldwin, Eric T.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Drug discovery today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldwin, Eric T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metrics and the effective computational scientist: process, quality and communication</atitle><jtitle>Drug discovery today</jtitle><addtitle>Drug Discov Today</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>17</volume><issue>17-18</issue><spage>935</spage><epage>941</epage><pages>935-941</pages><issn>1359-6446</issn><eissn>1878-5832</eissn><abstract>Recent treatments of computational knowledge worker productivity have focused upon the value the discipline brings to drug discovery using positive anecdotes. While this big picture approach provides important validation of the contributions of these knowledge workers, the impact accounts do not provide the granular detail that can help individuals and teams perform better. I suggest balancing the impact-focus with quantitative measures that can inform the development of scientists. Measuring the quality of work, analyzing and improving processes, and the critical evaluation of communication can provide immediate performance feedback. The introduction of quantitative measures can complement the longer term reporting of impacts on drug discovery. These metric data can document effectiveness trends and can provide a stronger foundation for the impact dialogue.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22406695</pmid><doi>10.1016/j.drudis.2012.03.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6446
ispartof Drug discovery today, 2012-09, Vol.17 (17-18), p.935-941
issn 1359-6446
1878-5832
language eng
recordid cdi_proquest_miscellaneous_1036880837
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Biological and medical sciences
Computer-Aided Design
Drug Design
Drug Industry - methods
General pharmacology
Humans
Medical sciences
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
title Metrics and the effective computational scientist: process, quality and communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metrics%20and%20the%20effective%20computational%20scientist:%20process,%20quality%20and%20communication&rft.jtitle=Drug%20discovery%20today&rft.au=Baldwin,%20Eric%20T.&rft.date=2012-09-01&rft.volume=17&rft.issue=17-18&rft.spage=935&rft.epage=941&rft.pages=935-941&rft.issn=1359-6446&rft.eissn=1878-5832&rft_id=info:doi/10.1016/j.drudis.2012.03.001&rft_dat=%3Cproquest_cross%3E1036880837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1036880837&rft_id=info:pmid/22406695&rft_els_id=S1359644612000827&rfr_iscdi=true