Metrics and the effective computational scientist: process, quality and communication
Recent treatments of computational knowledge worker productivity have focused upon the value the discipline brings to drug discovery using positive anecdotes. While this big picture approach provides important validation of the contributions of these knowledge workers, the impact accounts do not pro...
Gespeichert in:
Veröffentlicht in: | Drug discovery today 2012-09, Vol.17 (17-18), p.935-941 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 941 |
---|---|
container_issue | 17-18 |
container_start_page | 935 |
container_title | Drug discovery today |
container_volume | 17 |
creator | Baldwin, Eric T. |
description | Recent treatments of computational knowledge worker productivity have focused upon the value the discipline brings to drug discovery using positive anecdotes. While this big picture approach provides important validation of the contributions of these knowledge workers, the impact accounts do not provide the granular detail that can help individuals and teams perform better. I suggest balancing the impact-focus with quantitative measures that can inform the development of scientists. Measuring the quality of work, analyzing and improving processes, and the critical evaluation of communication can provide immediate performance feedback. The introduction of quantitative measures can complement the longer term reporting of impacts on drug discovery. These metric data can document effectiveness trends and can provide a stronger foundation for the impact dialogue. |
doi_str_mv | 10.1016/j.drudis.2012.03.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1036880837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359644612000827</els_id><sourcerecordid>1036880837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-16e59ba9c174199324bd8597a8a7dac7b92a38b5b069be9f5b2ba5db8da8161c3</originalsourceid><addsrcrecordid>eNp90E1rFTEUgOEgiq3VfyAyG8GFM-ZjkklcCFKsChU3dh1OkjOYy3zcJplC_73pvdcuu0oWzzkJLyFvGe0YZerTrgtpCzF3nDLeUdFRyp6Rc6YH3Uot-PN6F9K0qu_VGXmV864CbqR6Sc4476lSRp6Tm19YUvS5gSU05S82OI7oS7zDxq_zfitQ4rrA1GQfcSkxl8_NPq0ec_7Y3G4wxXJ_mK163pboD_41eTHClPHN6bwgN1ff_lz-aK9_f_95-fW69cLw0jKF0jgwng09M0bw3gUtzQAahgB-cIaD0E46qoxDM0rHHcjgdADNFPPignw47q1fut0wFzvH7HGaYMF1y5ZRobSmWgyV9kfq05pzwtHuU5wh3VdkH4LanT0GtQ9BLRW29qpj704vbG7G8Dj0v2AF708AsodpTLD4uuPRKUENV7q6L0eHtcddxGQPRT2GmGpwG9b49E_-AUE4lws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1036880837</pqid></control><display><type>article</type><title>Metrics and the effective computational scientist: process, quality and communication</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Baldwin, Eric T.</creator><creatorcontrib>Baldwin, Eric T.</creatorcontrib><description>Recent treatments of computational knowledge worker productivity have focused upon the value the discipline brings to drug discovery using positive anecdotes. While this big picture approach provides important validation of the contributions of these knowledge workers, the impact accounts do not provide the granular detail that can help individuals and teams perform better. I suggest balancing the impact-focus with quantitative measures that can inform the development of scientists. Measuring the quality of work, analyzing and improving processes, and the critical evaluation of communication can provide immediate performance feedback. The introduction of quantitative measures can complement the longer term reporting of impacts on drug discovery. These metric data can document effectiveness trends and can provide a stronger foundation for the impact dialogue.</description><identifier>ISSN: 1359-6446</identifier><identifier>EISSN: 1878-5832</identifier><identifier>DOI: 10.1016/j.drudis.2012.03.001</identifier><identifier>PMID: 22406695</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Computer-Aided Design ; Drug Design ; Drug Industry - methods ; General pharmacology ; Humans ; Medical sciences ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments</subject><ispartof>Drug discovery today, 2012-09, Vol.17 (17-18), p.935-941</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-16e59ba9c174199324bd8597a8a7dac7b92a38b5b069be9f5b2ba5db8da8161c3</citedby><cites>FETCH-LOGICAL-c392t-16e59ba9c174199324bd8597a8a7dac7b92a38b5b069be9f5b2ba5db8da8161c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.drudis.2012.03.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26309268$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22406695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baldwin, Eric T.</creatorcontrib><title>Metrics and the effective computational scientist: process, quality and communication</title><title>Drug discovery today</title><addtitle>Drug Discov Today</addtitle><description>Recent treatments of computational knowledge worker productivity have focused upon the value the discipline brings to drug discovery using positive anecdotes. While this big picture approach provides important validation of the contributions of these knowledge workers, the impact accounts do not provide the granular detail that can help individuals and teams perform better. I suggest balancing the impact-focus with quantitative measures that can inform the development of scientists. Measuring the quality of work, analyzing and improving processes, and the critical evaluation of communication can provide immediate performance feedback. The introduction of quantitative measures can complement the longer term reporting of impacts on drug discovery. These metric data can document effectiveness trends and can provide a stronger foundation for the impact dialogue.</description><subject>Biological and medical sciences</subject><subject>Computer-Aided Design</subject><subject>Drug Design</subject><subject>Drug Industry - methods</subject><subject>General pharmacology</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><issn>1359-6446</issn><issn>1878-5832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1rFTEUgOEgiq3VfyAyG8GFM-ZjkklcCFKsChU3dh1OkjOYy3zcJplC_73pvdcuu0oWzzkJLyFvGe0YZerTrgtpCzF3nDLeUdFRyp6Rc6YH3Uot-PN6F9K0qu_VGXmV864CbqR6Sc4476lSRp6Tm19YUvS5gSU05S82OI7oS7zDxq_zfitQ4rrA1GQfcSkxl8_NPq0ec_7Y3G4wxXJ_mK163pboD_41eTHClPHN6bwgN1ff_lz-aK9_f_95-fW69cLw0jKF0jgwng09M0bw3gUtzQAahgB-cIaD0E46qoxDM0rHHcjgdADNFPPignw47q1fut0wFzvH7HGaYMF1y5ZRobSmWgyV9kfq05pzwtHuU5wh3VdkH4LanT0GtQ9BLRW29qpj704vbG7G8Dj0v2AF708AsodpTLD4uuPRKUENV7q6L0eHtcddxGQPRT2GmGpwG9b49E_-AUE4lws</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Baldwin, Eric T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120901</creationdate><title>Metrics and the effective computational scientist: process, quality and communication</title><author>Baldwin, Eric T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-16e59ba9c174199324bd8597a8a7dac7b92a38b5b069be9f5b2ba5db8da8161c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Computer-Aided Design</topic><topic>Drug Design</topic><topic>Drug Industry - methods</topic><topic>General pharmacology</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldwin, Eric T.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Drug discovery today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldwin, Eric T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metrics and the effective computational scientist: process, quality and communication</atitle><jtitle>Drug discovery today</jtitle><addtitle>Drug Discov Today</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>17</volume><issue>17-18</issue><spage>935</spage><epage>941</epage><pages>935-941</pages><issn>1359-6446</issn><eissn>1878-5832</eissn><abstract>Recent treatments of computational knowledge worker productivity have focused upon the value the discipline brings to drug discovery using positive anecdotes. While this big picture approach provides important validation of the contributions of these knowledge workers, the impact accounts do not provide the granular detail that can help individuals and teams perform better. I suggest balancing the impact-focus with quantitative measures that can inform the development of scientists. Measuring the quality of work, analyzing and improving processes, and the critical evaluation of communication can provide immediate performance feedback. The introduction of quantitative measures can complement the longer term reporting of impacts on drug discovery. These metric data can document effectiveness trends and can provide a stronger foundation for the impact dialogue.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22406695</pmid><doi>10.1016/j.drudis.2012.03.001</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6446 |
ispartof | Drug discovery today, 2012-09, Vol.17 (17-18), p.935-941 |
issn | 1359-6446 1878-5832 |
language | eng |
recordid | cdi_proquest_miscellaneous_1036880837 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Biological and medical sciences Computer-Aided Design Drug Design Drug Industry - methods General pharmacology Humans Medical sciences Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments |
title | Metrics and the effective computational scientist: process, quality and communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metrics%20and%20the%20effective%20computational%20scientist:%20process,%20quality%20and%20communication&rft.jtitle=Drug%20discovery%20today&rft.au=Baldwin,%20Eric%20T.&rft.date=2012-09-01&rft.volume=17&rft.issue=17-18&rft.spage=935&rft.epage=941&rft.pages=935-941&rft.issn=1359-6446&rft.eissn=1878-5832&rft_id=info:doi/10.1016/j.drudis.2012.03.001&rft_dat=%3Cproquest_cross%3E1036880837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1036880837&rft_id=info:pmid/22406695&rft_els_id=S1359644612000827&rfr_iscdi=true |