Rational Coformer or Solvent Selection for Pharmaceutical Cocrystallization or Desolvation
It is demonstrated that the fluid-phase thermodynamics theory conductor-like screening model for real solvents (COSMO-RS) as implemented in the COSMOtherm software can be used for accurate and efficient screening of coformers for active pharmaceutical ingredient (API) cocrystallization. The excess e...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical sciences 2012-10, Vol.101 (10), p.3687-3697 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3697 |
---|---|
container_issue | 10 |
container_start_page | 3687 |
container_title | Journal of pharmaceutical sciences |
container_volume | 101 |
creator | Abramov, Yuriy A. Loschen, Christoph Klamt, Andreas |
description | It is demonstrated that the fluid-phase thermodynamics theory conductor-like screening model for real solvents (COSMO-RS) as implemented in the COSMOtherm software can be used for accurate and efficient screening of coformers for active pharmaceutical ingredient (API) cocrystallization. The excess enthalpy, Hex, between an API–coformer mixture relative to the pure components reflects the tendency of those two compounds to cocrystallize. Thus, predictive calculations may be performed with decent effort on a large set of molecular data in order to identify potentially new cocrystal systems. In addition, it is demonstrated that COSMO-RS theory allows reasonable ranking of coformers for API solubility improvement. As a result, experiments may be focused on those coformers, which have an increased probability of cocrystallization, leading to the largest improvement of the API solubility. In a similar way as potential coformers are identified for cocrystallization, solvents that do not tend to form solvates may be determined based on the highest Hexs with the API. The approach was successfully tested on tyrosine kinase inhibitor axitinib, which has a propensity to form relatively stable solvated structures with the majority of common solvents, as well as on thiophanate-methyl and thiophanate-ethyl benzimidazole fungicides, which form channel solvates. |
doi_str_mv | 10.1002/jps.23227 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1035102886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354915313678</els_id><sourcerecordid>3278520571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5667-7e8910ba0fd377f36c1d8fb84d24a6437738df2d4f705c36ca6a46177a130633</originalsourceid><addsrcrecordid>eNp1kV9v0zAUxS0EYt3ggS-AIiGk8ZDNf2I7fZwKDFBVJloJiRfLdW6EixMXOxmUT4-TdENC8GTZ53fu0T1G6BnBFwRjernbxwvKKJUP0IxwinOBiXyIZkmjOePF_ASdxrjDGAvM-WN0QmlJiSzwDH35pDvrW-2yha99aCBkPmRr726h7bI1ODCDniUtu_mqQ6MN9J01o8GEQ-y0c_bXOGRwvoaYvOP1CXpUaxfh6fE8Q5u3bzaLd_ny4_X7xdUyN1wImUso5wRvNa4rJmXNhCFVWW_LoqKFFkV6Y2VV06qoJeYmyVroQhApNWFYMHaGzqex--C_9xA71dhowDndgu-jIphxgmlZioS--Avd-T6k5RPFScoZWknUq4kywccYoFb7YBsdDmmUGvpWqW819p3Y58eJ_baB6p68KzgBL4-Ajqm0OujW2PiHE0wKPoZeTtwP6-Dw_0T14WZ9F51PDhs7-Hnv0OGbEpJJrj6vrtVqOSerTcHVwLOJh_QXtxaCisZCa6CyIX2yqrz9x4K_Ac6stqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517388217</pqid></control><display><type>article</type><title>Rational Coformer or Solvent Selection for Pharmaceutical Cocrystallization or Desolvation</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Abramov, Yuriy A. ; Loschen, Christoph ; Klamt, Andreas</creator><creatorcontrib>Abramov, Yuriy A. ; Loschen, Christoph ; Klamt, Andreas</creatorcontrib><description>It is demonstrated that the fluid-phase thermodynamics theory conductor-like screening model for real solvents (COSMO-RS) as implemented in the COSMOtherm software can be used for accurate and efficient screening of coformers for active pharmaceutical ingredient (API) cocrystallization. The excess enthalpy, Hex, between an API–coformer mixture relative to the pure components reflects the tendency of those two compounds to cocrystallize. Thus, predictive calculations may be performed with decent effort on a large set of molecular data in order to identify potentially new cocrystal systems. In addition, it is demonstrated that COSMO-RS theory allows reasonable ranking of coformers for API solubility improvement. As a result, experiments may be focused on those coformers, which have an increased probability of cocrystallization, leading to the largest improvement of the API solubility. In a similar way as potential coformers are identified for cocrystallization, solvents that do not tend to form solvates may be determined based on the highest Hexs with the API. The approach was successfully tested on tyrosine kinase inhibitor axitinib, which has a propensity to form relatively stable solvated structures with the majority of common solvents, as well as on thiophanate-methyl and thiophanate-ethyl benzimidazole fungicides, which form channel solvates.</description><identifier>ISSN: 0022-3549</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.23227</identifier><identifier>PMID: 22821740</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>Hoboken: Elsevier Inc</publisher><subject>Biological and medical sciences ; Chemistry, Pharmaceutical - methods ; cocrystals ; COSMO-RS ; crystal engineering ; crystallization ; Crystallization - methods ; desolvation ; excess enthalpy ; General pharmacology ; Imidazoles - chemistry ; in silico modeling ; Indazoles - chemistry ; Medical sciences ; Models, Chemical ; Pharmaceutical Preparations - chemistry ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Protein Kinase Inhibitors - chemistry ; Solubility ; solvates ; Solvents - chemistry ; Thermodynamics ; Thiophanate - chemistry</subject><ispartof>Journal of pharmaceutical sciences, 2012-10, Vol.101 (10), p.3687-3697</ispartof><rights>2012 Wiley Periodicals, Inc.</rights><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5667-7e8910ba0fd377f36c1d8fb84d24a6437738df2d4f705c36ca6a46177a130633</citedby><cites>FETCH-LOGICAL-c5667-7e8910ba0fd377f36c1d8fb84d24a6437738df2d4f705c36ca6a46177a130633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.23227$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjps.23227$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26376517$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22821740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abramov, Yuriy A.</creatorcontrib><creatorcontrib>Loschen, Christoph</creatorcontrib><creatorcontrib>Klamt, Andreas</creatorcontrib><title>Rational Coformer or Solvent Selection for Pharmaceutical Cocrystallization or Desolvation</title><title>Journal of pharmaceutical sciences</title><addtitle>J. Pharm. Sci</addtitle><description>It is demonstrated that the fluid-phase thermodynamics theory conductor-like screening model for real solvents (COSMO-RS) as implemented in the COSMOtherm software can be used for accurate and efficient screening of coformers for active pharmaceutical ingredient (API) cocrystallization. The excess enthalpy, Hex, between an API–coformer mixture relative to the pure components reflects the tendency of those two compounds to cocrystallize. Thus, predictive calculations may be performed with decent effort on a large set of molecular data in order to identify potentially new cocrystal systems. In addition, it is demonstrated that COSMO-RS theory allows reasonable ranking of coformers for API solubility improvement. As a result, experiments may be focused on those coformers, which have an increased probability of cocrystallization, leading to the largest improvement of the API solubility. In a similar way as potential coformers are identified for cocrystallization, solvents that do not tend to form solvates may be determined based on the highest Hexs with the API. The approach was successfully tested on tyrosine kinase inhibitor axitinib, which has a propensity to form relatively stable solvated structures with the majority of common solvents, as well as on thiophanate-methyl and thiophanate-ethyl benzimidazole fungicides, which form channel solvates.</description><subject>Biological and medical sciences</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>cocrystals</subject><subject>COSMO-RS</subject><subject>crystal engineering</subject><subject>crystallization</subject><subject>Crystallization - methods</subject><subject>desolvation</subject><subject>excess enthalpy</subject><subject>General pharmacology</subject><subject>Imidazoles - chemistry</subject><subject>in silico modeling</subject><subject>Indazoles - chemistry</subject><subject>Medical sciences</subject><subject>Models, Chemical</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Protein Kinase Inhibitors - chemistry</subject><subject>Solubility</subject><subject>solvates</subject><subject>Solvents - chemistry</subject><subject>Thermodynamics</subject><subject>Thiophanate - chemistry</subject><issn>0022-3549</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV9v0zAUxS0EYt3ggS-AIiGk8ZDNf2I7fZwKDFBVJloJiRfLdW6EixMXOxmUT4-TdENC8GTZ53fu0T1G6BnBFwRjernbxwvKKJUP0IxwinOBiXyIZkmjOePF_ASdxrjDGAvM-WN0QmlJiSzwDH35pDvrW-2yha99aCBkPmRr726h7bI1ODCDniUtu_mqQ6MN9J01o8GEQ-y0c_bXOGRwvoaYvOP1CXpUaxfh6fE8Q5u3bzaLd_ny4_X7xdUyN1wImUso5wRvNa4rJmXNhCFVWW_LoqKFFkV6Y2VV06qoJeYmyVroQhApNWFYMHaGzqex--C_9xA71dhowDndgu-jIphxgmlZioS--Avd-T6k5RPFScoZWknUq4kywccYoFb7YBsdDmmUGvpWqW819p3Y58eJ_baB6p68KzgBL4-Ajqm0OujW2PiHE0wKPoZeTtwP6-Dw_0T14WZ9F51PDhs7-Hnv0OGbEpJJrj6vrtVqOSerTcHVwLOJh_QXtxaCisZCa6CyIX2yqrz9x4K_Ac6stqU</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Abramov, Yuriy A.</creator><creator>Loschen, Christoph</creator><creator>Klamt, Andreas</creator><general>Elsevier Inc</general><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Pharmaceutical Association</general><general>Elsevier Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201210</creationdate><title>Rational Coformer or Solvent Selection for Pharmaceutical Cocrystallization or Desolvation</title><author>Abramov, Yuriy A. ; Loschen, Christoph ; Klamt, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5667-7e8910ba0fd377f36c1d8fb84d24a6437738df2d4f705c36ca6a46177a130633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>cocrystals</topic><topic>COSMO-RS</topic><topic>crystal engineering</topic><topic>crystallization</topic><topic>Crystallization - methods</topic><topic>desolvation</topic><topic>excess enthalpy</topic><topic>General pharmacology</topic><topic>Imidazoles - chemistry</topic><topic>in silico modeling</topic><topic>Indazoles - chemistry</topic><topic>Medical sciences</topic><topic>Models, Chemical</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Protein Kinase Inhibitors - chemistry</topic><topic>Solubility</topic><topic>solvates</topic><topic>Solvents - chemistry</topic><topic>Thermodynamics</topic><topic>Thiophanate - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abramov, Yuriy A.</creatorcontrib><creatorcontrib>Loschen, Christoph</creatorcontrib><creatorcontrib>Klamt, Andreas</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abramov, Yuriy A.</au><au>Loschen, Christoph</au><au>Klamt, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Coformer or Solvent Selection for Pharmaceutical Cocrystallization or Desolvation</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J. Pharm. Sci</addtitle><date>2012-10</date><risdate>2012</risdate><volume>101</volume><issue>10</issue><spage>3687</spage><epage>3697</epage><pages>3687-3697</pages><issn>0022-3549</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>It is demonstrated that the fluid-phase thermodynamics theory conductor-like screening model for real solvents (COSMO-RS) as implemented in the COSMOtherm software can be used for accurate and efficient screening of coformers for active pharmaceutical ingredient (API) cocrystallization. The excess enthalpy, Hex, between an API–coformer mixture relative to the pure components reflects the tendency of those two compounds to cocrystallize. Thus, predictive calculations may be performed with decent effort on a large set of molecular data in order to identify potentially new cocrystal systems. In addition, it is demonstrated that COSMO-RS theory allows reasonable ranking of coformers for API solubility improvement. As a result, experiments may be focused on those coformers, which have an increased probability of cocrystallization, leading to the largest improvement of the API solubility. In a similar way as potential coformers are identified for cocrystallization, solvents that do not tend to form solvates may be determined based on the highest Hexs with the API. The approach was successfully tested on tyrosine kinase inhibitor axitinib, which has a propensity to form relatively stable solvated structures with the majority of common solvents, as well as on thiophanate-methyl and thiophanate-ethyl benzimidazole fungicides, which form channel solvates.</abstract><cop>Hoboken</cop><pub>Elsevier Inc</pub><pmid>22821740</pmid><doi>10.1002/jps.23227</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3549 |
ispartof | Journal of pharmaceutical sciences, 2012-10, Vol.101 (10), p.3687-3697 |
issn | 0022-3549 1520-6017 |
language | eng |
recordid | cdi_proquest_miscellaneous_1035102886 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Biological and medical sciences Chemistry, Pharmaceutical - methods cocrystals COSMO-RS crystal engineering crystallization Crystallization - methods desolvation excess enthalpy General pharmacology Imidazoles - chemistry in silico modeling Indazoles - chemistry Medical sciences Models, Chemical Pharmaceutical Preparations - chemistry Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments Protein Kinase Inhibitors - chemistry Solubility solvates Solvents - chemistry Thermodynamics Thiophanate - chemistry |
title | Rational Coformer or Solvent Selection for Pharmaceutical Cocrystallization or Desolvation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Coformer%20or%20Solvent%20Selection%20for%20Pharmaceutical%20Cocrystallization%20or%20Desolvation&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Abramov,%20Yuriy%20A.&rft.date=2012-10&rft.volume=101&rft.issue=10&rft.spage=3687&rft.epage=3697&rft.pages=3687-3697&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.23227&rft_dat=%3Cproquest_cross%3E3278520571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1517388217&rft_id=info:pmid/22821740&rft_els_id=S0022354915313678&rfr_iscdi=true |