Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study

Marine biomass is considered an important feedstock for anaerobic digestion to generate energy; however, its utilization as an energy source is still minimal around the world. In the current study, the biochemical methane potential test was used to evaluate energy recovery from seaweed, brown algae,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2012-07, Vol.43 (1), p.396-401
Hauptverfasser: Gurung, Anup, Van Ginkel, Steven W., Kang, Woo-Chang, Qambrani, Naveed Ahmed, Oh, Sang-Eun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 1
container_start_page 396
container_title Energy (Oxford)
container_volume 43
creator Gurung, Anup
Van Ginkel, Steven W.
Kang, Woo-Chang
Qambrani, Naveed Ahmed
Oh, Sang-Eun
description Marine biomass is considered an important feedstock for anaerobic digestion to generate energy; however, its utilization as an energy source is still minimal around the world. In the current study, the biochemical methane potential test was used to evaluate energy recovery from seaweed, brown algae, green algae, and fish viscera as substrates for methane production. Cumulative CH4 yields of 256 ± 28 and 179 ± 35 mL CH4/g VS were observed using green and brown algae, respectively, after 60 days of digestion. The CH4 content of the biogas was approximately 70% for both substrates. Lower CH4 yields of 127 ± 20 and 102 ± 25 mL CH4/g VS were observed using fish viscera and seaweed, respectively. Given that 44 ± 15% of the TCOD was converted to CH4, a longer adaption period or pretreatment of the marine biomass is necessary to fully convert the TCOD to CH4. ► The BMP test was used to evaluate energy recovery from marine biomass. ► Cumulative CH4 yields of 256 ± 28 mL CH4/g VS was observed using green algae. ► Using brown algae cumulative CH4 yields of 179 ± 35 mL CH4/g VS was observed. ► Lower CH4 yields of and 102 ± 25 mL CH4/g VS was observed using seaweed.
doi_str_mv 10.1016/j.energy.2012.04.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1034826188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S036054421200285X</els_id><sourcerecordid>1034826188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-532a509b61a1784e1f7761ccd648a90257b60e2aada78da625a396043f9319903</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxX1ooNttvkEguhRysTuSZdnqIRBC-gcCPaR7FmN5vKvFa20lO7DfPtp6ybEwIJj3m9Gbl2U3HAoOXH3dFzRS2J4KAVwUIAuA6kO2glJBXkkpPmafYtxD6jZar7LN0ysOM07Oj8z37IDBjcRa5w8YI8NULPo5WPqn0rTDJLuRtTjZHZsoTvEbe2ADtnm0OBCL09ydPmdXPQ6Rri_vOtt8f_rz-DN__v3j1-PDc25lpae8KgVWoFvFkdeNJN7XteLWdko2qEFUdauABGKHddOhEhWWWoEse11yraFcZ3fL3mPwf-dkxhxctDQMyaWfo-FQykYo3jQJlQtqg48xUG-OwaVzTwky5-TM3izJmXNyBqRJGaWxL5cf8HxfH3C0Lr7PCgWghOaJu124Hr3BbUjM5iUtSjrUoNTZ6_1CUArk1VEw0ToaLXUukJ1M593_rbwBb8CPcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034826188</pqid></control><display><type>article</type><title>Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gurung, Anup ; Van Ginkel, Steven W. ; Kang, Woo-Chang ; Qambrani, Naveed Ahmed ; Oh, Sang-Eun</creator><creatorcontrib>Gurung, Anup ; Van Ginkel, Steven W. ; Kang, Woo-Chang ; Qambrani, Naveed Ahmed ; Oh, Sang-Eun</creatorcontrib><description>Marine biomass is considered an important feedstock for anaerobic digestion to generate energy; however, its utilization as an energy source is still minimal around the world. In the current study, the biochemical methane potential test was used to evaluate energy recovery from seaweed, brown algae, green algae, and fish viscera as substrates for methane production. Cumulative CH4 yields of 256 ± 28 and 179 ± 35 mL CH4/g VS were observed using green and brown algae, respectively, after 60 days of digestion. The CH4 content of the biogas was approximately 70% for both substrates. Lower CH4 yields of 127 ± 20 and 102 ± 25 mL CH4/g VS were observed using fish viscera and seaweed, respectively. Given that 44 ± 15% of the TCOD was converted to CH4, a longer adaption period or pretreatment of the marine biomass is necessary to fully convert the TCOD to CH4. ► The BMP test was used to evaluate energy recovery from marine biomass. ► Cumulative CH4 yields of 256 ± 28 mL CH4/g VS was observed using green algae. ► Using brown algae cumulative CH4 yields of 179 ± 35 mL CH4/g VS was observed. ► Lower CH4 yields of and 102 ± 25 mL CH4/g VS was observed using seaweed.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2012.04.005</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algae ; Anaerobic digestion ; animal organs ; Applied sciences ; Biochemical methane potential ; Biochemistry ; biogas ; Biomass ; Chlorophycota ; digestion ; Energy ; energy recovery ; Exact sciences and technology ; feedstocks ; Fish ; macroalgae ; Marine ; Marine biomass ; Methane ; methane production ; Natural energy ; Phaeophycophyta ; Renewable energy ; Seaweeds ; Viscera</subject><ispartof>Energy (Oxford), 2012-07, Vol.43 (1), p.396-401</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-532a509b61a1784e1f7761ccd648a90257b60e2aada78da625a396043f9319903</citedby><cites>FETCH-LOGICAL-c459t-532a509b61a1784e1f7761ccd648a90257b60e2aada78da625a396043f9319903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2012.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26006291$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gurung, Anup</creatorcontrib><creatorcontrib>Van Ginkel, Steven W.</creatorcontrib><creatorcontrib>Kang, Woo-Chang</creatorcontrib><creatorcontrib>Qambrani, Naveed Ahmed</creatorcontrib><creatorcontrib>Oh, Sang-Eun</creatorcontrib><title>Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study</title><title>Energy (Oxford)</title><description>Marine biomass is considered an important feedstock for anaerobic digestion to generate energy; however, its utilization as an energy source is still minimal around the world. In the current study, the biochemical methane potential test was used to evaluate energy recovery from seaweed, brown algae, green algae, and fish viscera as substrates for methane production. Cumulative CH4 yields of 256 ± 28 and 179 ± 35 mL CH4/g VS were observed using green and brown algae, respectively, after 60 days of digestion. The CH4 content of the biogas was approximately 70% for both substrates. Lower CH4 yields of 127 ± 20 and 102 ± 25 mL CH4/g VS were observed using fish viscera and seaweed, respectively. Given that 44 ± 15% of the TCOD was converted to CH4, a longer adaption period or pretreatment of the marine biomass is necessary to fully convert the TCOD to CH4. ► The BMP test was used to evaluate energy recovery from marine biomass. ► Cumulative CH4 yields of 256 ± 28 mL CH4/g VS was observed using green algae. ► Using brown algae cumulative CH4 yields of 179 ± 35 mL CH4/g VS was observed. ► Lower CH4 yields of and 102 ± 25 mL CH4/g VS was observed using seaweed.</description><subject>Algae</subject><subject>Anaerobic digestion</subject><subject>animal organs</subject><subject>Applied sciences</subject><subject>Biochemical methane potential</subject><subject>Biochemistry</subject><subject>biogas</subject><subject>Biomass</subject><subject>Chlorophycota</subject><subject>digestion</subject><subject>Energy</subject><subject>energy recovery</subject><subject>Exact sciences and technology</subject><subject>feedstocks</subject><subject>Fish</subject><subject>macroalgae</subject><subject>Marine</subject><subject>Marine biomass</subject><subject>Methane</subject><subject>methane production</subject><subject>Natural energy</subject><subject>Phaeophycophyta</subject><subject>Renewable energy</subject><subject>Seaweeds</subject><subject>Viscera</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxX1ooNttvkEguhRysTuSZdnqIRBC-gcCPaR7FmN5vKvFa20lO7DfPtp6ybEwIJj3m9Gbl2U3HAoOXH3dFzRS2J4KAVwUIAuA6kO2glJBXkkpPmafYtxD6jZar7LN0ysOM07Oj8z37IDBjcRa5w8YI8NULPo5WPqn0rTDJLuRtTjZHZsoTvEbe2ADtnm0OBCL09ydPmdXPQ6Rri_vOtt8f_rz-DN__v3j1-PDc25lpae8KgVWoFvFkdeNJN7XteLWdko2qEFUdauABGKHddOhEhWWWoEse11yraFcZ3fL3mPwf-dkxhxctDQMyaWfo-FQykYo3jQJlQtqg48xUG-OwaVzTwky5-TM3izJmXNyBqRJGaWxL5cf8HxfH3C0Lr7PCgWghOaJu124Hr3BbUjM5iUtSjrUoNTZ6_1CUArk1VEw0ToaLXUukJ1M593_rbwBb8CPcg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Gurung, Anup</creator><creator>Van Ginkel, Steven W.</creator><creator>Kang, Woo-Chang</creator><creator>Qambrani, Naveed Ahmed</creator><creator>Oh, Sang-Eun</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120701</creationdate><title>Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study</title><author>Gurung, Anup ; Van Ginkel, Steven W. ; Kang, Woo-Chang ; Qambrani, Naveed Ahmed ; Oh, Sang-Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-532a509b61a1784e1f7761ccd648a90257b60e2aada78da625a396043f9319903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algae</topic><topic>Anaerobic digestion</topic><topic>animal organs</topic><topic>Applied sciences</topic><topic>Biochemical methane potential</topic><topic>Biochemistry</topic><topic>biogas</topic><topic>Biomass</topic><topic>Chlorophycota</topic><topic>digestion</topic><topic>Energy</topic><topic>energy recovery</topic><topic>Exact sciences and technology</topic><topic>feedstocks</topic><topic>Fish</topic><topic>macroalgae</topic><topic>Marine</topic><topic>Marine biomass</topic><topic>Methane</topic><topic>methane production</topic><topic>Natural energy</topic><topic>Phaeophycophyta</topic><topic>Renewable energy</topic><topic>Seaweeds</topic><topic>Viscera</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurung, Anup</creatorcontrib><creatorcontrib>Van Ginkel, Steven W.</creatorcontrib><creatorcontrib>Kang, Woo-Chang</creatorcontrib><creatorcontrib>Qambrani, Naveed Ahmed</creatorcontrib><creatorcontrib>Oh, Sang-Eun</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurung, Anup</au><au>Van Ginkel, Steven W.</au><au>Kang, Woo-Chang</au><au>Qambrani, Naveed Ahmed</au><au>Oh, Sang-Eun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study</atitle><jtitle>Energy (Oxford)</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>43</volume><issue>1</issue><spage>396</spage><epage>401</epage><pages>396-401</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>Marine biomass is considered an important feedstock for anaerobic digestion to generate energy; however, its utilization as an energy source is still minimal around the world. In the current study, the biochemical methane potential test was used to evaluate energy recovery from seaweed, brown algae, green algae, and fish viscera as substrates for methane production. Cumulative CH4 yields of 256 ± 28 and 179 ± 35 mL CH4/g VS were observed using green and brown algae, respectively, after 60 days of digestion. The CH4 content of the biogas was approximately 70% for both substrates. Lower CH4 yields of 127 ± 20 and 102 ± 25 mL CH4/g VS were observed using fish viscera and seaweed, respectively. Given that 44 ± 15% of the TCOD was converted to CH4, a longer adaption period or pretreatment of the marine biomass is necessary to fully convert the TCOD to CH4. ► The BMP test was used to evaluate energy recovery from marine biomass. ► Cumulative CH4 yields of 256 ± 28 mL CH4/g VS was observed using green algae. ► Using brown algae cumulative CH4 yields of 179 ± 35 mL CH4/g VS was observed. ► Lower CH4 yields of and 102 ± 25 mL CH4/g VS was observed using seaweed.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2012.04.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2012-07, Vol.43 (1), p.396-401
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_1034826188
source Elsevier ScienceDirect Journals Complete
subjects Algae
Anaerobic digestion
animal organs
Applied sciences
Biochemical methane potential
Biochemistry
biogas
Biomass
Chlorophycota
digestion
Energy
energy recovery
Exact sciences and technology
feedstocks
Fish
macroalgae
Marine
Marine biomass
Methane
methane production
Natural energy
Phaeophycophyta
Renewable energy
Seaweeds
Viscera
title Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20marine%20biomass%20as%20a%20source%20of%20methane%20in%20batch%20tests:%20A%20lab-scale%20study&rft.jtitle=Energy%20(Oxford)&rft.au=Gurung,%20Anup&rft.date=2012-07-01&rft.volume=43&rft.issue=1&rft.spage=396&rft.epage=401&rft.pages=396-401&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2012.04.005&rft_dat=%3Cproquest_cross%3E1034826188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034826188&rft_id=info:pmid/&rft_els_id=S036054421200285X&rfr_iscdi=true