Automatic white matter lesion segmentation using an adaptive outlier detection method

Abstract White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging 2012-07, Vol.30 (6), p.807-823
Hauptverfasser: Ong, Kok Haur, Ramachandram, Dhanesh, Mandava, Rajeswari, Shuaib, Ibrahim Lutfi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 823
container_issue 6
container_start_page 807
container_title Magnetic resonance imaging
container_volume 30
creator Ong, Kok Haur
Ramachandram, Dhanesh
Mandava, Rajeswari
Shuaib, Ibrahim Lutfi
description Abstract White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. In this paper, a new automated method for WM lesions segmentation is presented. In the proposed method, the presence of WM lesions is detected as outliers in the intensity distribution of the fluid-attenuated inversion recovery (FLAIR) MR images using an adaptive outlier detection approach. Outliers are detected using a novel adaptive trimmed mean algorithm and box–whisker plot. In addition, pre- and postprocessing steps are implemented to reduce false positives attributed to MRI artifacts commonly observed in FLAIR sequences. The approach is validated using the cranial MRI sequences of 38 subjects. A significant correlation ( R =0.9641, P value=3.12×10−3 ) is observed between the automated approach and manual segmentation by radiologist. The accuracy of the proposed approach was further validated by comparing the lesion volumes computed using the automated approach and lesions manually segmented by an expert radiologist. Finally, the proposed approach is compared against leading lesion segmentation algorithms using a benchmark dataset.
doi_str_mv 10.1016/j.mri.2012.01.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1034814655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0730725X12000434</els_id><sourcerecordid>1034814655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-490422c12237fc163ece69d5411ab89fa7c0f56d024294a1d29eb031a852a623</originalsourceid><addsrcrecordid>eNqNkU1LHTEYhUOp1KvtD-hGZtnNjHnzMR8IgkhbBcFFLXQXcpN3NLczk2uSsfjvzfTaLlyIqyTkOWfxHEI-A62AQn28qcbgKkaBVRQqSpt3ZAVtw0vZduI9WdGG07Jh8tc-OYhxQymVjMsPZJ8x2bQda1bk59mc_KiTM8WfO5ewyPeEoRgwOj8VEW9HnFL-z485uum20FOhrd4m94CFn9PgMm0xofnLjJjuvP1I9no9RPz0fB6Sm29fb84vyqvr75fnZ1elEQJSKToqGDPAGG96AzVHg3VnpQDQ67brdWNoL2tLmWCd0GBZh2vKQbeS6ZrxQ_JlV7sN_n7GmNToosFh0BP6OSqgXLQgainfgEJbc4B2aYUdaoKPMWCvtsGNOjxmaOFqtVHZu1q8Kwoqe8-Zo-f6eT2i_Z_4JzoDJzsAs46H7ExF43AyaF3I6pT17tX60xdpM7jJGT38xkeMGz-HKXtWoGLOqB_L8MvuwPLmggv-BPPMp8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018631182</pqid></control><display><type>article</type><title>Automatic white matter lesion segmentation using an adaptive outlier detection method</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ong, Kok Haur ; Ramachandram, Dhanesh ; Mandava, Rajeswari ; Shuaib, Ibrahim Lutfi</creator><creatorcontrib>Ong, Kok Haur ; Ramachandram, Dhanesh ; Mandava, Rajeswari ; Shuaib, Ibrahim Lutfi</creatorcontrib><description>Abstract White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. In this paper, a new automated method for WM lesions segmentation is presented. In the proposed method, the presence of WM lesions is detected as outliers in the intensity distribution of the fluid-attenuated inversion recovery (FLAIR) MR images using an adaptive outlier detection approach. Outliers are detected using a novel adaptive trimmed mean algorithm and box–whisker plot. In addition, pre- and postprocessing steps are implemented to reduce false positives attributed to MRI artifacts commonly observed in FLAIR sequences. The approach is validated using the cranial MRI sequences of 38 subjects. A significant correlation ( R =0.9641, P value=3.12×10−3 ) is observed between the automated approach and manual segmentation by radiologist. The accuracy of the proposed approach was further validated by comparing the lesion volumes computed using the automated approach and lesions manually segmented by an expert radiologist. Finally, the proposed approach is compared against leading lesion segmentation algorithms using a benchmark dataset.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2012.01.007</identifier><identifier>PMID: 22578927</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Adaptive trimmed mean algorithm ; Adult ; Aged ; Algorithms ; Box–whisker plot ; Brain - pathology ; Humans ; Image Processing, Computer-Assisted ; Leukoaraiosis ; Magnetic Resonance Imaging - methods ; Middle Aged ; MRI ; Outlier ; Radiology ; White matter hyperintensities ; White matter lesions</subject><ispartof>Magnetic resonance imaging, 2012-07, Vol.30 (6), p.807-823</ispartof><rights>2012</rights><rights>Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-490422c12237fc163ece69d5411ab89fa7c0f56d024294a1d29eb031a852a623</citedby><cites>FETCH-LOGICAL-c441t-490422c12237fc163ece69d5411ab89fa7c0f56d024294a1d29eb031a852a623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mri.2012.01.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22578927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ong, Kok Haur</creatorcontrib><creatorcontrib>Ramachandram, Dhanesh</creatorcontrib><creatorcontrib>Mandava, Rajeswari</creatorcontrib><creatorcontrib>Shuaib, Ibrahim Lutfi</creatorcontrib><title>Automatic white matter lesion segmentation using an adaptive outlier detection method</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Abstract White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. In this paper, a new automated method for WM lesions segmentation is presented. In the proposed method, the presence of WM lesions is detected as outliers in the intensity distribution of the fluid-attenuated inversion recovery (FLAIR) MR images using an adaptive outlier detection approach. Outliers are detected using a novel adaptive trimmed mean algorithm and box–whisker plot. In addition, pre- and postprocessing steps are implemented to reduce false positives attributed to MRI artifacts commonly observed in FLAIR sequences. The approach is validated using the cranial MRI sequences of 38 subjects. A significant correlation ( R =0.9641, P value=3.12×10−3 ) is observed between the automated approach and manual segmentation by radiologist. The accuracy of the proposed approach was further validated by comparing the lesion volumes computed using the automated approach and lesions manually segmented by an expert radiologist. Finally, the proposed approach is compared against leading lesion segmentation algorithms using a benchmark dataset.</description><subject>Adaptive trimmed mean algorithm</subject><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Box–whisker plot</subject><subject>Brain - pathology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Leukoaraiosis</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Middle Aged</subject><subject>MRI</subject><subject>Outlier</subject><subject>Radiology</subject><subject>White matter hyperintensities</subject><subject>White matter lesions</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LHTEYhUOp1KvtD-hGZtnNjHnzMR8IgkhbBcFFLXQXcpN3NLczk2uSsfjvzfTaLlyIqyTkOWfxHEI-A62AQn28qcbgKkaBVRQqSpt3ZAVtw0vZduI9WdGG07Jh8tc-OYhxQymVjMsPZJ8x2bQda1bk59mc_KiTM8WfO5ewyPeEoRgwOj8VEW9HnFL-z485uum20FOhrd4m94CFn9PgMm0xofnLjJjuvP1I9no9RPz0fB6Sm29fb84vyqvr75fnZ1elEQJSKToqGDPAGG96AzVHg3VnpQDQ67brdWNoL2tLmWCd0GBZh2vKQbeS6ZrxQ_JlV7sN_n7GmNToosFh0BP6OSqgXLQgainfgEJbc4B2aYUdaoKPMWCvtsGNOjxmaOFqtVHZu1q8Kwoqe8-Zo-f6eT2i_Z_4JzoDJzsAs46H7ExF43AyaF3I6pT17tX60xdpM7jJGT38xkeMGz-HKXtWoGLOqB_L8MvuwPLmggv-BPPMp8g</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Ong, Kok Haur</creator><creator>Ramachandram, Dhanesh</creator><creator>Mandava, Rajeswari</creator><creator>Shuaib, Ibrahim Lutfi</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120701</creationdate><title>Automatic white matter lesion segmentation using an adaptive outlier detection method</title><author>Ong, Kok Haur ; Ramachandram, Dhanesh ; Mandava, Rajeswari ; Shuaib, Ibrahim Lutfi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-490422c12237fc163ece69d5411ab89fa7c0f56d024294a1d29eb031a852a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive trimmed mean algorithm</topic><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Box–whisker plot</topic><topic>Brain - pathology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Leukoaraiosis</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Middle Aged</topic><topic>MRI</topic><topic>Outlier</topic><topic>Radiology</topic><topic>White matter hyperintensities</topic><topic>White matter lesions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, Kok Haur</creatorcontrib><creatorcontrib>Ramachandram, Dhanesh</creatorcontrib><creatorcontrib>Mandava, Rajeswari</creatorcontrib><creatorcontrib>Shuaib, Ibrahim Lutfi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ong, Kok Haur</au><au>Ramachandram, Dhanesh</au><au>Mandava, Rajeswari</au><au>Shuaib, Ibrahim Lutfi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic white matter lesion segmentation using an adaptive outlier detection method</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>30</volume><issue>6</issue><spage>807</spage><epage>823</epage><pages>807-823</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Abstract White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. In this paper, a new automated method for WM lesions segmentation is presented. In the proposed method, the presence of WM lesions is detected as outliers in the intensity distribution of the fluid-attenuated inversion recovery (FLAIR) MR images using an adaptive outlier detection approach. Outliers are detected using a novel adaptive trimmed mean algorithm and box–whisker plot. In addition, pre- and postprocessing steps are implemented to reduce false positives attributed to MRI artifacts commonly observed in FLAIR sequences. The approach is validated using the cranial MRI sequences of 38 subjects. A significant correlation ( R =0.9641, P value=3.12×10−3 ) is observed between the automated approach and manual segmentation by radiologist. The accuracy of the proposed approach was further validated by comparing the lesion volumes computed using the automated approach and lesions manually segmented by an expert radiologist. Finally, the proposed approach is compared against leading lesion segmentation algorithms using a benchmark dataset.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>22578927</pmid><doi>10.1016/j.mri.2012.01.007</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-725X
ispartof Magnetic resonance imaging, 2012-07, Vol.30 (6), p.807-823
issn 0730-725X
1873-5894
language eng
recordid cdi_proquest_miscellaneous_1034814655
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adaptive trimmed mean algorithm
Adult
Aged
Algorithms
Box–whisker plot
Brain - pathology
Humans
Image Processing, Computer-Assisted
Leukoaraiosis
Magnetic Resonance Imaging - methods
Middle Aged
MRI
Outlier
Radiology
White matter hyperintensities
White matter lesions
title Automatic white matter lesion segmentation using an adaptive outlier detection method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20white%20matter%20lesion%20segmentation%20using%20an%20adaptive%20outlier%20detection%20method&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Ong,%20Kok%20Haur&rft.date=2012-07-01&rft.volume=30&rft.issue=6&rft.spage=807&rft.epage=823&rft.pages=807-823&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2012.01.007&rft_dat=%3Cproquest_cross%3E1034814655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1018631182&rft_id=info:pmid/22578927&rft_els_id=S0730725X12000434&rfr_iscdi=true