Automatic white matter lesion segmentation using an adaptive outlier detection method
Abstract White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related di...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance imaging 2012-07, Vol.30 (6), p.807-823 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 823 |
---|---|
container_issue | 6 |
container_start_page | 807 |
container_title | Magnetic resonance imaging |
container_volume | 30 |
creator | Ong, Kok Haur Ramachandram, Dhanesh Mandava, Rajeswari Shuaib, Ibrahim Lutfi |
description | Abstract White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. In this paper, a new automated method for WM lesions segmentation is presented. In the proposed method, the presence of WM lesions is detected as outliers in the intensity distribution of the fluid-attenuated inversion recovery (FLAIR) MR images using an adaptive outlier detection approach. Outliers are detected using a novel adaptive trimmed mean algorithm and box–whisker plot. In addition, pre- and postprocessing steps are implemented to reduce false positives attributed to MRI artifacts commonly observed in FLAIR sequences. The approach is validated using the cranial MRI sequences of 38 subjects. A significant correlation ( R =0.9641, P value=3.12×10−3 ) is observed between the automated approach and manual segmentation by radiologist. The accuracy of the proposed approach was further validated by comparing the lesion volumes computed using the automated approach and lesions manually segmented by an expert radiologist. Finally, the proposed approach is compared against leading lesion segmentation algorithms using a benchmark dataset. |
doi_str_mv | 10.1016/j.mri.2012.01.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1034814655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0730725X12000434</els_id><sourcerecordid>1034814655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-490422c12237fc163ece69d5411ab89fa7c0f56d024294a1d29eb031a852a623</originalsourceid><addsrcrecordid>eNqNkU1LHTEYhUOp1KvtD-hGZtnNjHnzMR8IgkhbBcFFLXQXcpN3NLczk2uSsfjvzfTaLlyIqyTkOWfxHEI-A62AQn28qcbgKkaBVRQqSpt3ZAVtw0vZduI9WdGG07Jh8tc-OYhxQymVjMsPZJ8x2bQda1bk59mc_KiTM8WfO5ewyPeEoRgwOj8VEW9HnFL-z485uum20FOhrd4m94CFn9PgMm0xofnLjJjuvP1I9no9RPz0fB6Sm29fb84vyqvr75fnZ1elEQJSKToqGDPAGG96AzVHg3VnpQDQ67brdWNoL2tLmWCd0GBZh2vKQbeS6ZrxQ_JlV7sN_n7GmNToosFh0BP6OSqgXLQgainfgEJbc4B2aYUdaoKPMWCvtsGNOjxmaOFqtVHZu1q8Kwoqe8-Zo-f6eT2i_Z_4JzoDJzsAs46H7ExF43AyaF3I6pT17tX60xdpM7jJGT38xkeMGz-HKXtWoGLOqB_L8MvuwPLmggv-BPPMp8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018631182</pqid></control><display><type>article</type><title>Automatic white matter lesion segmentation using an adaptive outlier detection method</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ong, Kok Haur ; Ramachandram, Dhanesh ; Mandava, Rajeswari ; Shuaib, Ibrahim Lutfi</creator><creatorcontrib>Ong, Kok Haur ; Ramachandram, Dhanesh ; Mandava, Rajeswari ; Shuaib, Ibrahim Lutfi</creatorcontrib><description>Abstract White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. In this paper, a new automated method for WM lesions segmentation is presented. In the proposed method, the presence of WM lesions is detected as outliers in the intensity distribution of the fluid-attenuated inversion recovery (FLAIR) MR images using an adaptive outlier detection approach. Outliers are detected using a novel adaptive trimmed mean algorithm and box–whisker plot. In addition, pre- and postprocessing steps are implemented to reduce false positives attributed to MRI artifacts commonly observed in FLAIR sequences. The approach is validated using the cranial MRI sequences of 38 subjects. A significant correlation ( R =0.9641, P value=3.12×10−3 ) is observed between the automated approach and manual segmentation by radiologist. The accuracy of the proposed approach was further validated by comparing the lesion volumes computed using the automated approach and lesions manually segmented by an expert radiologist. Finally, the proposed approach is compared against leading lesion segmentation algorithms using a benchmark dataset.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2012.01.007</identifier><identifier>PMID: 22578927</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Adaptive trimmed mean algorithm ; Adult ; Aged ; Algorithms ; Box–whisker plot ; Brain - pathology ; Humans ; Image Processing, Computer-Assisted ; Leukoaraiosis ; Magnetic Resonance Imaging - methods ; Middle Aged ; MRI ; Outlier ; Radiology ; White matter hyperintensities ; White matter lesions</subject><ispartof>Magnetic resonance imaging, 2012-07, Vol.30 (6), p.807-823</ispartof><rights>2012</rights><rights>Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-490422c12237fc163ece69d5411ab89fa7c0f56d024294a1d29eb031a852a623</citedby><cites>FETCH-LOGICAL-c441t-490422c12237fc163ece69d5411ab89fa7c0f56d024294a1d29eb031a852a623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mri.2012.01.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22578927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ong, Kok Haur</creatorcontrib><creatorcontrib>Ramachandram, Dhanesh</creatorcontrib><creatorcontrib>Mandava, Rajeswari</creatorcontrib><creatorcontrib>Shuaib, Ibrahim Lutfi</creatorcontrib><title>Automatic white matter lesion segmentation using an adaptive outlier detection method</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Abstract White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. In this paper, a new automated method for WM lesions segmentation is presented. In the proposed method, the presence of WM lesions is detected as outliers in the intensity distribution of the fluid-attenuated inversion recovery (FLAIR) MR images using an adaptive outlier detection approach. Outliers are detected using a novel adaptive trimmed mean algorithm and box–whisker plot. In addition, pre- and postprocessing steps are implemented to reduce false positives attributed to MRI artifacts commonly observed in FLAIR sequences. The approach is validated using the cranial MRI sequences of 38 subjects. A significant correlation ( R =0.9641, P value=3.12×10−3 ) is observed between the automated approach and manual segmentation by radiologist. The accuracy of the proposed approach was further validated by comparing the lesion volumes computed using the automated approach and lesions manually segmented by an expert radiologist. Finally, the proposed approach is compared against leading lesion segmentation algorithms using a benchmark dataset.</description><subject>Adaptive trimmed mean algorithm</subject><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Box–whisker plot</subject><subject>Brain - pathology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Leukoaraiosis</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Middle Aged</subject><subject>MRI</subject><subject>Outlier</subject><subject>Radiology</subject><subject>White matter hyperintensities</subject><subject>White matter lesions</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LHTEYhUOp1KvtD-hGZtnNjHnzMR8IgkhbBcFFLXQXcpN3NLczk2uSsfjvzfTaLlyIqyTkOWfxHEI-A62AQn28qcbgKkaBVRQqSpt3ZAVtw0vZduI9WdGG07Jh8tc-OYhxQymVjMsPZJ8x2bQda1bk59mc_KiTM8WfO5ewyPeEoRgwOj8VEW9HnFL-z485uum20FOhrd4m94CFn9PgMm0xofnLjJjuvP1I9no9RPz0fB6Sm29fb84vyqvr75fnZ1elEQJSKToqGDPAGG96AzVHg3VnpQDQ67brdWNoL2tLmWCd0GBZh2vKQbeS6ZrxQ_JlV7sN_n7GmNToosFh0BP6OSqgXLQgainfgEJbc4B2aYUdaoKPMWCvtsGNOjxmaOFqtVHZu1q8Kwoqe8-Zo-f6eT2i_Z_4JzoDJzsAs46H7ExF43AyaF3I6pT17tX60xdpM7jJGT38xkeMGz-HKXtWoGLOqB_L8MvuwPLmggv-BPPMp8g</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Ong, Kok Haur</creator><creator>Ramachandram, Dhanesh</creator><creator>Mandava, Rajeswari</creator><creator>Shuaib, Ibrahim Lutfi</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120701</creationdate><title>Automatic white matter lesion segmentation using an adaptive outlier detection method</title><author>Ong, Kok Haur ; Ramachandram, Dhanesh ; Mandava, Rajeswari ; Shuaib, Ibrahim Lutfi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-490422c12237fc163ece69d5411ab89fa7c0f56d024294a1d29eb031a852a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive trimmed mean algorithm</topic><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Box–whisker plot</topic><topic>Brain - pathology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Leukoaraiosis</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Middle Aged</topic><topic>MRI</topic><topic>Outlier</topic><topic>Radiology</topic><topic>White matter hyperintensities</topic><topic>White matter lesions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, Kok Haur</creatorcontrib><creatorcontrib>Ramachandram, Dhanesh</creatorcontrib><creatorcontrib>Mandava, Rajeswari</creatorcontrib><creatorcontrib>Shuaib, Ibrahim Lutfi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ong, Kok Haur</au><au>Ramachandram, Dhanesh</au><au>Mandava, Rajeswari</au><au>Shuaib, Ibrahim Lutfi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic white matter lesion segmentation using an adaptive outlier detection method</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>30</volume><issue>6</issue><spage>807</spage><epage>823</epage><pages>807-823</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Abstract White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. In this paper, a new automated method for WM lesions segmentation is presented. In the proposed method, the presence of WM lesions is detected as outliers in the intensity distribution of the fluid-attenuated inversion recovery (FLAIR) MR images using an adaptive outlier detection approach. Outliers are detected using a novel adaptive trimmed mean algorithm and box–whisker plot. In addition, pre- and postprocessing steps are implemented to reduce false positives attributed to MRI artifacts commonly observed in FLAIR sequences. The approach is validated using the cranial MRI sequences of 38 subjects. A significant correlation ( R =0.9641, P value=3.12×10−3 ) is observed between the automated approach and manual segmentation by radiologist. The accuracy of the proposed approach was further validated by comparing the lesion volumes computed using the automated approach and lesions manually segmented by an expert radiologist. Finally, the proposed approach is compared against leading lesion segmentation algorithms using a benchmark dataset.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>22578927</pmid><doi>10.1016/j.mri.2012.01.007</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-725X |
ispartof | Magnetic resonance imaging, 2012-07, Vol.30 (6), p.807-823 |
issn | 0730-725X 1873-5894 |
language | eng |
recordid | cdi_proquest_miscellaneous_1034814655 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adaptive trimmed mean algorithm Adult Aged Algorithms Box–whisker plot Brain - pathology Humans Image Processing, Computer-Assisted Leukoaraiosis Magnetic Resonance Imaging - methods Middle Aged MRI Outlier Radiology White matter hyperintensities White matter lesions |
title | Automatic white matter lesion segmentation using an adaptive outlier detection method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20white%20matter%20lesion%20segmentation%20using%20an%20adaptive%20outlier%20detection%20method&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Ong,%20Kok%20Haur&rft.date=2012-07-01&rft.volume=30&rft.issue=6&rft.spage=807&rft.epage=823&rft.pages=807-823&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2012.01.007&rft_dat=%3Cproquest_cross%3E1034814655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1018631182&rft_id=info:pmid/22578927&rft_els_id=S0730725X12000434&rfr_iscdi=true |