Aging redistributes medial prefrontal neuronal excitability and impedes extinction of trace fear conditioning

Abstract Cognitive flexibility is critical for survival and reflects the malleability of the central nervous system (CNS) in response to changing environmental demands. Normal aging results in difficulties modifying established behaviors, which may involve medial prefrontal cortex (mPFC) dysfunction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurobiology of aging 2012-08, Vol.33 (8), p.1744-1757
Hauptverfasser: Kaczorowski, Catherine C, Davis, Scott J, Moyer, James R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1757
container_issue 8
container_start_page 1744
container_title Neurobiology of aging
container_volume 33
creator Kaczorowski, Catherine C
Davis, Scott J
Moyer, James R
description Abstract Cognitive flexibility is critical for survival and reflects the malleability of the central nervous system (CNS) in response to changing environmental demands. Normal aging results in difficulties modifying established behaviors, which may involve medial prefrontal cortex (mPFC) dysfunction. Using extinction of conditioned fear in rats to assay cognitive flexibility, we demonstrate that extinction deficits reminiscent of mPFC dysfunction first appear during middle age, in the absence of hippocampus-dependent context deficits. Emergence of aging-related extinction deficits paralleled a redistribution of neuronal excitability across two critical mPFC regions via two distinct mechanisms. First, excitability decreased in regular spiking neurons of infralimbic-mPFC (IL), a region whose activity is required for extinction. Second, excitability increased in burst spiking neurons of prelimbic-mPFC (PL), a region whose activity hinders extinction. Experiments using synaptic blockers revealed that these aging-related differences were intrinsic. Thus, changes in IL and PL intrinsic excitability may contribute to cognitive flexibility impairments observed during normal aging.
doi_str_mv 10.1016/j.neurobiolaging.2011.03.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1034811051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0197458011000972</els_id><sourcerecordid>1020048288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6623fe73c985be9ceec004e229c4da7edc4cbbda47a519c9767342c5ebe482763</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRCILoW_gHLgwCVh7DhxIiGkqqK0UiUOwNlyJpPKS2IvtoO6_x6HLUhw6slj633I7w1jbzhUHHj7bl85WoMfrJ_NnXV3lQDOK6grEPCE7XjTdCWXvXrKdsB7VcqmgzP2IsY9ACip2ufsTPCm5iDbHVsuNo0i0GhjCnZYE8ViyTczF4dAU_Au5fG3pcsD3aNNZrCzTcfCuLGwy4HGzKH7ZB0m613hpyIFg1RMZEKB3o12e88-L9mzycyRXj2c5-zb1cevl9fl7edPN5cXtyVKJVPZtqKeSNXYd81APRIhgCQhepSjUTSixGEYjVSm4T32qlW1FNjQQLITqq3P2duT7iH4HyvFpBcbkebZOPJr1Bxq2XEODX8EVGTvTnRdhr4_QTH4GHM4-hDsYsIxg_TWjd7rf7vRWzcaap1FMv31g9M65IT_kv-UkQFXJwDlaH5aCjqiJYe5jUCY9OjtY50-_CeEs3UWzfydjhT3fg25y_w3HYUG_WXbk21NciIAvRL1L3GowCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020048288</pqid></control><display><type>article</type><title>Aging redistributes medial prefrontal neuronal excitability and impedes extinction of trace fear conditioning</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Kaczorowski, Catherine C ; Davis, Scott J ; Moyer, James R</creator><creatorcontrib>Kaczorowski, Catherine C ; Davis, Scott J ; Moyer, James R</creatorcontrib><description>Abstract Cognitive flexibility is critical for survival and reflects the malleability of the central nervous system (CNS) in response to changing environmental demands. Normal aging results in difficulties modifying established behaviors, which may involve medial prefrontal cortex (mPFC) dysfunction. Using extinction of conditioned fear in rats to assay cognitive flexibility, we demonstrate that extinction deficits reminiscent of mPFC dysfunction first appear during middle age, in the absence of hippocampus-dependent context deficits. Emergence of aging-related extinction deficits paralleled a redistribution of neuronal excitability across two critical mPFC regions via two distinct mechanisms. First, excitability decreased in regular spiking neurons of infralimbic-mPFC (IL), a region whose activity is required for extinction. Second, excitability increased in burst spiking neurons of prelimbic-mPFC (PL), a region whose activity hinders extinction. Experiments using synaptic blockers revealed that these aging-related differences were intrinsic. Thus, changes in IL and PL intrinsic excitability may contribute to cognitive flexibility impairments observed during normal aging.</description><identifier>ISSN: 0197-4580</identifier><identifier>EISSN: 1558-1497</identifier><identifier>DOI: 10.1016/j.neurobiolaging.2011.03.020</identifier><identifier>PMID: 21531046</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aging ; Aging - physiology ; Animals ; Burst spiking ; Central nervous system ; Cognitive ability ; Cognitive flexibility ; Conditioning, Classical - physiology ; Cortex (prefrontal) ; Excitability ; Extinction ; Extinction, Psychological - physiology ; Fear - physiology ; Fear conditioning ; Firing pattern ; Infralimbic ; Internal Medicine ; Intrinsic excitability ; Male ; Nerve Net - physiology ; Nervous system ; Neurology ; Neurons ; Prefrontal Cortex - physiology ; Prelimbic ; Rats ; Rats, Inbred F344 ; Regular spiking ; Trace fear conditioning</subject><ispartof>Neurobiology of aging, 2012-08, Vol.33 (8), p.1744-1757</ispartof><rights>Elsevier Inc.</rights><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6623fe73c985be9ceec004e229c4da7edc4cbbda47a519c9767342c5ebe482763</citedby><cites>FETCH-LOGICAL-c474t-6623fe73c985be9ceec004e229c4da7edc4cbbda47a519c9767342c5ebe482763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neurobiolaging.2011.03.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21531046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaczorowski, Catherine C</creatorcontrib><creatorcontrib>Davis, Scott J</creatorcontrib><creatorcontrib>Moyer, James R</creatorcontrib><title>Aging redistributes medial prefrontal neuronal excitability and impedes extinction of trace fear conditioning</title><title>Neurobiology of aging</title><addtitle>Neurobiol Aging</addtitle><description>Abstract Cognitive flexibility is critical for survival and reflects the malleability of the central nervous system (CNS) in response to changing environmental demands. Normal aging results in difficulties modifying established behaviors, which may involve medial prefrontal cortex (mPFC) dysfunction. Using extinction of conditioned fear in rats to assay cognitive flexibility, we demonstrate that extinction deficits reminiscent of mPFC dysfunction first appear during middle age, in the absence of hippocampus-dependent context deficits. Emergence of aging-related extinction deficits paralleled a redistribution of neuronal excitability across two critical mPFC regions via two distinct mechanisms. First, excitability decreased in regular spiking neurons of infralimbic-mPFC (IL), a region whose activity is required for extinction. Second, excitability increased in burst spiking neurons of prelimbic-mPFC (PL), a region whose activity hinders extinction. Experiments using synaptic blockers revealed that these aging-related differences were intrinsic. Thus, changes in IL and PL intrinsic excitability may contribute to cognitive flexibility impairments observed during normal aging.</description><subject>Aging</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Burst spiking</subject><subject>Central nervous system</subject><subject>Cognitive ability</subject><subject>Cognitive flexibility</subject><subject>Conditioning, Classical - physiology</subject><subject>Cortex (prefrontal)</subject><subject>Excitability</subject><subject>Extinction</subject><subject>Extinction, Psychological - physiology</subject><subject>Fear - physiology</subject><subject>Fear conditioning</subject><subject>Firing pattern</subject><subject>Infralimbic</subject><subject>Internal Medicine</subject><subject>Intrinsic excitability</subject><subject>Male</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Prefrontal Cortex - physiology</subject><subject>Prelimbic</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Regular spiking</subject><subject>Trace fear conditioning</subject><issn>0197-4580</issn><issn>1558-1497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQtRCILoW_gHLgwCVh7DhxIiGkqqK0UiUOwNlyJpPKS2IvtoO6_x6HLUhw6slj633I7w1jbzhUHHj7bl85WoMfrJ_NnXV3lQDOK6grEPCE7XjTdCWXvXrKdsB7VcqmgzP2IsY9ACip2ufsTPCm5iDbHVsuNo0i0GhjCnZYE8ViyTczF4dAU_Au5fG3pcsD3aNNZrCzTcfCuLGwy4HGzKH7ZB0m613hpyIFg1RMZEKB3o12e88-L9mzycyRXj2c5-zb1cevl9fl7edPN5cXtyVKJVPZtqKeSNXYd81APRIhgCQhepSjUTSixGEYjVSm4T32qlW1FNjQQLITqq3P2duT7iH4HyvFpBcbkebZOPJr1Bxq2XEODX8EVGTvTnRdhr4_QTH4GHM4-hDsYsIxg_TWjd7rf7vRWzcaap1FMv31g9M65IT_kv-UkQFXJwDlaH5aCjqiJYe5jUCY9OjtY50-_CeEs3UWzfydjhT3fg25y_w3HYUG_WXbk21NciIAvRL1L3GowCU</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Kaczorowski, Catherine C</creator><creator>Davis, Scott J</creator><creator>Moyer, James R</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20120801</creationdate><title>Aging redistributes medial prefrontal neuronal excitability and impedes extinction of trace fear conditioning</title><author>Kaczorowski, Catherine C ; Davis, Scott J ; Moyer, James R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6623fe73c985be9ceec004e229c4da7edc4cbbda47a519c9767342c5ebe482763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aging</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Burst spiking</topic><topic>Central nervous system</topic><topic>Cognitive ability</topic><topic>Cognitive flexibility</topic><topic>Conditioning, Classical - physiology</topic><topic>Cortex (prefrontal)</topic><topic>Excitability</topic><topic>Extinction</topic><topic>Extinction, Psychological - physiology</topic><topic>Fear - physiology</topic><topic>Fear conditioning</topic><topic>Firing pattern</topic><topic>Infralimbic</topic><topic>Internal Medicine</topic><topic>Intrinsic excitability</topic><topic>Male</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Prefrontal Cortex - physiology</topic><topic>Prelimbic</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Regular spiking</topic><topic>Trace fear conditioning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaczorowski, Catherine C</creatorcontrib><creatorcontrib>Davis, Scott J</creatorcontrib><creatorcontrib>Moyer, James R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neurobiology of aging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaczorowski, Catherine C</au><au>Davis, Scott J</au><au>Moyer, James R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aging redistributes medial prefrontal neuronal excitability and impedes extinction of trace fear conditioning</atitle><jtitle>Neurobiology of aging</jtitle><addtitle>Neurobiol Aging</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>33</volume><issue>8</issue><spage>1744</spage><epage>1757</epage><pages>1744-1757</pages><issn>0197-4580</issn><eissn>1558-1497</eissn><abstract>Abstract Cognitive flexibility is critical for survival and reflects the malleability of the central nervous system (CNS) in response to changing environmental demands. Normal aging results in difficulties modifying established behaviors, which may involve medial prefrontal cortex (mPFC) dysfunction. Using extinction of conditioned fear in rats to assay cognitive flexibility, we demonstrate that extinction deficits reminiscent of mPFC dysfunction first appear during middle age, in the absence of hippocampus-dependent context deficits. Emergence of aging-related extinction deficits paralleled a redistribution of neuronal excitability across two critical mPFC regions via two distinct mechanisms. First, excitability decreased in regular spiking neurons of infralimbic-mPFC (IL), a region whose activity is required for extinction. Second, excitability increased in burst spiking neurons of prelimbic-mPFC (PL), a region whose activity hinders extinction. Experiments using synaptic blockers revealed that these aging-related differences were intrinsic. Thus, changes in IL and PL intrinsic excitability may contribute to cognitive flexibility impairments observed during normal aging.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21531046</pmid><doi>10.1016/j.neurobiolaging.2011.03.020</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0197-4580
ispartof Neurobiology of aging, 2012-08, Vol.33 (8), p.1744-1757
issn 0197-4580
1558-1497
language eng
recordid cdi_proquest_miscellaneous_1034811051
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Aging
Aging - physiology
Animals
Burst spiking
Central nervous system
Cognitive ability
Cognitive flexibility
Conditioning, Classical - physiology
Cortex (prefrontal)
Excitability
Extinction
Extinction, Psychological - physiology
Fear - physiology
Fear conditioning
Firing pattern
Infralimbic
Internal Medicine
Intrinsic excitability
Male
Nerve Net - physiology
Nervous system
Neurology
Neurons
Prefrontal Cortex - physiology
Prelimbic
Rats
Rats, Inbred F344
Regular spiking
Trace fear conditioning
title Aging redistributes medial prefrontal neuronal excitability and impedes extinction of trace fear conditioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aging%20redistributes%20medial%20prefrontal%20neuronal%20excitability%20and%20impedes%20extinction%20of%20trace%20fear%20conditioning&rft.jtitle=Neurobiology%20of%20aging&rft.au=Kaczorowski,%20Catherine%20C&rft.date=2012-08-01&rft.volume=33&rft.issue=8&rft.spage=1744&rft.epage=1757&rft.pages=1744-1757&rft.issn=0197-4580&rft.eissn=1558-1497&rft_id=info:doi/10.1016/j.neurobiolaging.2011.03.020&rft_dat=%3Cproquest_cross%3E1020048288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020048288&rft_id=info:pmid/21531046&rft_els_id=S0197458011000972&rfr_iscdi=true