The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation
Budding yeast cells are assumed to trigger Start and enter the cell cycle only after they attain a critical size set by external conditions. However, arguing against deterministic models of cell size control, cell volume at Start displays great individual variability even under constant conditions....
Gespeichert in:
Veröffentlicht in: | Nature communications 2012-08, Vol.3 (1), p.1012-1012, Article 1012 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1012 |
---|---|
container_issue | 1 |
container_start_page | 1012 |
container_title | Nature communications |
container_volume | 3 |
creator | Ferrezuelo, Francisco Colomina, Neus Palmisano, Alida Garí, Eloi Gallego, Carme Csikász-Nagy, Attila Aldea, Martí |
description | Budding yeast cells are assumed to trigger Start and enter the cell cycle only after they attain a critical size set by external conditions. However, arguing against deterministic models of cell size control, cell volume at Start displays great individual variability even under constant conditions. Here we show that cell size at Start is robustly set at a single-cell level by the volume growth rate in G1, which explains the observed variability. We find that this growth-rate-dependent sizer is intimately hardwired into the Start network and the Ydj1 chaperone is key for setting cell size as a function of the individual growth rate. Mathematical modelling and experimental data indicate that a growth-rate-dependent sizer is sufficient to ensure size homeostasis and, as a remarkable advantage over a rigid sizer mechanism, it reduces noise in G1 length and provides an immediate solution for size adaptation to external conditions at a population level.
It is assumed that budding yeast need to reach a certain size before entering the cell cycle. Here, using imaging and a mathematical model, Ferrezuelo
et al.
show that there is variability in the size of cells entering the cell cycle and this is controlled by growth rate in G1. |
doi_str_mv | 10.1038/ncomms2015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1034800725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2746372401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-1ee59b98c842bea647b571036f956894118b10a24c5a250b997028aa4ee130633</originalsourceid><addsrcrecordid>eNpl0F1LwzAUBuAgihtzN_4ACXgjSjVJkza9lOEXDLyZ1-U0O9s62mYmmTJ_vRmbH2gIJCTPeXMIIaecXXOW6pvO2Lb1gnF1QPqCSZ7wXKSHv_Y9MvR-yeJIC66lPCY9IYpYrHSfmMkCqXF1qA001NcfSGtPPQYKccaDbt5gYrBpaINv2NBqQ-fOvocFdRCQBhthgLqjC9ui9QF8rIduSmEKqwChtt0JOZpB43G4Xwfk5f5uMnpMxs8PT6PbcWKkSkPCEVVRFdpoKSqETOaVymOb2axQmS4k57riDIQ0CoRiVVHkTGgAichTlqXpgFzsclfOvq7Rh7Kt_bZ16NCufRmzpGYsFyrS8z90adeui91tlRI540xGdblTxlnvHc7KlatbcJuItk6XP78f8dk-cl21OP2mX38dwdUO-HjVzdH9fvNf3CcfZI1q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035270104</pqid></control><display><type>article</type><title>The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation</title><source>SpringerOpen</source><creator>Ferrezuelo, Francisco ; Colomina, Neus ; Palmisano, Alida ; Garí, Eloi ; Gallego, Carme ; Csikász-Nagy, Attila ; Aldea, Martí</creator><creatorcontrib>Ferrezuelo, Francisco ; Colomina, Neus ; Palmisano, Alida ; Garí, Eloi ; Gallego, Carme ; Csikász-Nagy, Attila ; Aldea, Martí</creatorcontrib><description>Budding yeast cells are assumed to trigger Start and enter the cell cycle only after they attain a critical size set by external conditions. However, arguing against deterministic models of cell size control, cell volume at Start displays great individual variability even under constant conditions. Here we show that cell size at Start is robustly set at a single-cell level by the volume growth rate in G1, which explains the observed variability. We find that this growth-rate-dependent sizer is intimately hardwired into the Start network and the Ydj1 chaperone is key for setting cell size as a function of the individual growth rate. Mathematical modelling and experimental data indicate that a growth-rate-dependent sizer is sufficient to ensure size homeostasis and, as a remarkable advantage over a rigid sizer mechanism, it reduces noise in G1 length and provides an immediate solution for size adaptation to external conditions at a population level.
It is assumed that budding yeast need to reach a certain size before entering the cell cycle. Here, using imaging and a mathematical model, Ferrezuelo
et al.
show that there is variability in the size of cells entering the cell cycle and this is controlled by growth rate in G1.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2015</identifier><identifier>PMID: 22910358</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/641/83 ; Cell Cycle ; G1 Phase ; Homeostasis ; HSP40 Heat-Shock Proteins - genetics ; HSP40 Heat-Shock Proteins - metabolism ; Humanities and Social Sciences ; Kinetics ; multidisciplinary ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2012-08, Vol.3 (1), p.1012-1012, Article 1012</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Aug 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-1ee59b98c842bea647b571036f956894118b10a24c5a250b997028aa4ee130633</citedby><cites>FETCH-LOGICAL-c453t-1ee59b98c842bea647b571036f956894118b10a24c5a250b997028aa4ee130633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms2015$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms2015$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,42165,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms2015$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22910358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrezuelo, Francisco</creatorcontrib><creatorcontrib>Colomina, Neus</creatorcontrib><creatorcontrib>Palmisano, Alida</creatorcontrib><creatorcontrib>Garí, Eloi</creatorcontrib><creatorcontrib>Gallego, Carme</creatorcontrib><creatorcontrib>Csikász-Nagy, Attila</creatorcontrib><creatorcontrib>Aldea, Martí</creatorcontrib><title>The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Budding yeast cells are assumed to trigger Start and enter the cell cycle only after they attain a critical size set by external conditions. However, arguing against deterministic models of cell size control, cell volume at Start displays great individual variability even under constant conditions. Here we show that cell size at Start is robustly set at a single-cell level by the volume growth rate in G1, which explains the observed variability. We find that this growth-rate-dependent sizer is intimately hardwired into the Start network and the Ydj1 chaperone is key for setting cell size as a function of the individual growth rate. Mathematical modelling and experimental data indicate that a growth-rate-dependent sizer is sufficient to ensure size homeostasis and, as a remarkable advantage over a rigid sizer mechanism, it reduces noise in G1 length and provides an immediate solution for size adaptation to external conditions at a population level.
It is assumed that budding yeast need to reach a certain size before entering the cell cycle. Here, using imaging and a mathematical model, Ferrezuelo
et al.
show that there is variability in the size of cells entering the cell cycle and this is controlled by growth rate in G1.</description><subject>631/80/641/83</subject><subject>Cell Cycle</subject><subject>G1 Phase</subject><subject>Homeostasis</subject><subject>HSP40 Heat-Shock Proteins - genetics</subject><subject>HSP40 Heat-Shock Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Kinetics</subject><subject>multidisciplinary</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpl0F1LwzAUBuAgihtzN_4ACXgjSjVJkza9lOEXDLyZ1-U0O9s62mYmmTJ_vRmbH2gIJCTPeXMIIaecXXOW6pvO2Lb1gnF1QPqCSZ7wXKSHv_Y9MvR-yeJIC66lPCY9IYpYrHSfmMkCqXF1qA001NcfSGtPPQYKccaDbt5gYrBpaINv2NBqQ-fOvocFdRCQBhthgLqjC9ui9QF8rIduSmEKqwChtt0JOZpB43G4Xwfk5f5uMnpMxs8PT6PbcWKkSkPCEVVRFdpoKSqETOaVymOb2axQmS4k57riDIQ0CoRiVVHkTGgAichTlqXpgFzsclfOvq7Rh7Kt_bZ16NCufRmzpGYsFyrS8z90adeui91tlRI540xGdblTxlnvHc7KlatbcJuItk6XP78f8dk-cl21OP2mX38dwdUO-HjVzdH9fvNf3CcfZI1q</recordid><startdate>20120821</startdate><enddate>20120821</enddate><creator>Ferrezuelo, Francisco</creator><creator>Colomina, Neus</creator><creator>Palmisano, Alida</creator><creator>Garí, Eloi</creator><creator>Gallego, Carme</creator><creator>Csikász-Nagy, Attila</creator><creator>Aldea, Martí</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20120821</creationdate><title>The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation</title><author>Ferrezuelo, Francisco ; Colomina, Neus ; Palmisano, Alida ; Garí, Eloi ; Gallego, Carme ; Csikász-Nagy, Attila ; Aldea, Martí</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-1ee59b98c842bea647b571036f956894118b10a24c5a250b997028aa4ee130633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/80/641/83</topic><topic>Cell Cycle</topic><topic>G1 Phase</topic><topic>Homeostasis</topic><topic>HSP40 Heat-Shock Proteins - genetics</topic><topic>HSP40 Heat-Shock Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Kinetics</topic><topic>multidisciplinary</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrezuelo, Francisco</creatorcontrib><creatorcontrib>Colomina, Neus</creatorcontrib><creatorcontrib>Palmisano, Alida</creatorcontrib><creatorcontrib>Garí, Eloi</creatorcontrib><creatorcontrib>Gallego, Carme</creatorcontrib><creatorcontrib>Csikász-Nagy, Attila</creatorcontrib><creatorcontrib>Aldea, Martí</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ferrezuelo, Francisco</au><au>Colomina, Neus</au><au>Palmisano, Alida</au><au>Garí, Eloi</au><au>Gallego, Carme</au><au>Csikász-Nagy, Attila</au><au>Aldea, Martí</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2012-08-21</date><risdate>2012</risdate><volume>3</volume><issue>1</issue><spage>1012</spage><epage>1012</epage><pages>1012-1012</pages><artnum>1012</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Budding yeast cells are assumed to trigger Start and enter the cell cycle only after they attain a critical size set by external conditions. However, arguing against deterministic models of cell size control, cell volume at Start displays great individual variability even under constant conditions. Here we show that cell size at Start is robustly set at a single-cell level by the volume growth rate in G1, which explains the observed variability. We find that this growth-rate-dependent sizer is intimately hardwired into the Start network and the Ydj1 chaperone is key for setting cell size as a function of the individual growth rate. Mathematical modelling and experimental data indicate that a growth-rate-dependent sizer is sufficient to ensure size homeostasis and, as a remarkable advantage over a rigid sizer mechanism, it reduces noise in G1 length and provides an immediate solution for size adaptation to external conditions at a population level.
It is assumed that budding yeast need to reach a certain size before entering the cell cycle. Here, using imaging and a mathematical model, Ferrezuelo
et al.
show that there is variability in the size of cells entering the cell cycle and this is controlled by growth rate in G1.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22910358</pmid><doi>10.1038/ncomms2015</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2012-08, Vol.3 (1), p.1012-1012, Article 1012 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1034800725 |
source | SpringerOpen |
subjects | 631/80/641/83 Cell Cycle G1 Phase Homeostasis HSP40 Heat-Shock Proteins - genetics HSP40 Heat-Shock Proteins - metabolism Humanities and Social Sciences Kinetics multidisciplinary Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Science Science (multidisciplinary) |
title | The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20critical%20size%20is%20set%20at%20a%20single-cell%20level%20by%20growth%20rate%20to%20attain%20homeostasis%20and%20adaptation&rft.jtitle=Nature%20communications&rft.au=Ferrezuelo,%20Francisco&rft.date=2012-08-21&rft.volume=3&rft.issue=1&rft.spage=1012&rft.epage=1012&rft.pages=1012-1012&rft.artnum=1012&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2015&rft_dat=%3Cproquest_C6C%3E2746372401%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035270104&rft_id=info:pmid/22910358&rfr_iscdi=true |