Nanoscale Topography Mediates the Adhesion of F‑Actin

Using a controllable nanoengineered surface that alters the dynamics of filamentous actin (F-actin) adhesion, we studied the tunability of biomolecular surface attachment. By grafting aminated nanoparticles, NPs, with diameters ranging from 12 to 85 nm to a random copolymer film, precise control ove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2012-08, Vol.28 (33), p.12216-12224
Hauptverfasser: Caporizzo, Matthew A, Sun, Yujie, Goldman, Yale E, Composto, Russell J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12224
container_issue 33
container_start_page 12216
container_title Langmuir
container_volume 28
creator Caporizzo, Matthew A
Sun, Yujie
Goldman, Yale E
Composto, Russell J
description Using a controllable nanoengineered surface that alters the dynamics of filamentous actin (F-actin) adhesion, we studied the tunability of biomolecular surface attachment. By grafting aminated nanoparticles, NPs, with diameters ranging from 12 to 85 nm to a random copolymer film, precise control over surface roughness parameters is realized. The ability to selectively generate monodisperse or polydisperse features of varying size and areal density leads to immobilized, side-on wobbly, or end-on F-actin binding as characterized by total internal reflection fluorescence (TIRF) microscopy. The interaction between the surface and actin is explained by a worm-like chain model that balances the bending energy penalty required for actin to conform to topographical features with the electrostatic attraction engineered into the surface. A Myosin V motility assay demonstrates that electrostatically immobilized actin retains its ability to direct myosin motion, indicating that nanoengineered surfaces are attractive candidates for biomolecular device fabrication.
doi_str_mv 10.1021/la302250x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1034657365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1034657365</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-e9455e9344278c2074bcab53732bae8d9404d53d10fad0b3ac221b487444ea5f3</originalsourceid><addsrcrecordid>eNpt0L1OwzAQwHELgWgpDLwAyoIEQ8DxR-yMVUUBqcBS5ujiXGiqNA52ItGNV-AVeRJStdCF6Zaf7k5_Qs4jehNRFt1WwCljkn4ckGEkGQ2lZuqQDKkSPFQi5gNy4v2SUppwkRyTAWOaJ0msh0Q9Q229gQqDuW3sm4NmsQ6eMC-hRR-0CwzG-QJ9aevAFsH0-_NrbNqyPiVHBVQez3ZzRF6nd_PJQzh7uX-cjGchcCHbEBMhJfZXBVPasP6hzEAmueIsA9R5IqjIJc8jWkBOMw6GsSgTWgkhEGTBR-Rqu7dx9r1D36ar0husKqjRdj6NKBexVDyWPb3eUuOs9w6LtHHlCty6R-mmU_rXqbcXu7VdtsL8T_6G6cHlDsCmTuGgNqXfu5jpWFO1d2B8urSdq_sa_xz8AfaVeoY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034657365</pqid></control><display><type>article</type><title>Nanoscale Topography Mediates the Adhesion of F‑Actin</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Caporizzo, Matthew A ; Sun, Yujie ; Goldman, Yale E ; Composto, Russell J</creator><creatorcontrib>Caporizzo, Matthew A ; Sun, Yujie ; Goldman, Yale E ; Composto, Russell J</creatorcontrib><description>Using a controllable nanoengineered surface that alters the dynamics of filamentous actin (F-actin) adhesion, we studied the tunability of biomolecular surface attachment. By grafting aminated nanoparticles, NPs, with diameters ranging from 12 to 85 nm to a random copolymer film, precise control over surface roughness parameters is realized. The ability to selectively generate monodisperse or polydisperse features of varying size and areal density leads to immobilized, side-on wobbly, or end-on F-actin binding as characterized by total internal reflection fluorescence (TIRF) microscopy. The interaction between the surface and actin is explained by a worm-like chain model that balances the bending energy penalty required for actin to conform to topographical features with the electrostatic attraction engineered into the surface. A Myosin V motility assay demonstrates that electrostatically immobilized actin retains its ability to direct myosin motion, indicating that nanoengineered surfaces are attractive candidates for biomolecular device fabrication.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la302250x</identifier><identifier>PMID: 22839968</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Actin Cytoskeleton - chemistry ; Actins - chemistry ; Adsorption ; Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Models, Molecular ; Nanotechnology - methods ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Protein Conformation ; Silicon Dioxide - chemistry ; Static Electricity ; Surface Properties</subject><ispartof>Langmuir, 2012-08, Vol.28 (33), p.12216-12224</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-e9455e9344278c2074bcab53732bae8d9404d53d10fad0b3ac221b487444ea5f3</citedby><cites>FETCH-LOGICAL-a345t-e9455e9344278c2074bcab53732bae8d9404d53d10fad0b3ac221b487444ea5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la302250x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la302250x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26286807$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22839968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caporizzo, Matthew A</creatorcontrib><creatorcontrib>Sun, Yujie</creatorcontrib><creatorcontrib>Goldman, Yale E</creatorcontrib><creatorcontrib>Composto, Russell J</creatorcontrib><title>Nanoscale Topography Mediates the Adhesion of F‑Actin</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Using a controllable nanoengineered surface that alters the dynamics of filamentous actin (F-actin) adhesion, we studied the tunability of biomolecular surface attachment. By grafting aminated nanoparticles, NPs, with diameters ranging from 12 to 85 nm to a random copolymer film, precise control over surface roughness parameters is realized. The ability to selectively generate monodisperse or polydisperse features of varying size and areal density leads to immobilized, side-on wobbly, or end-on F-actin binding as characterized by total internal reflection fluorescence (TIRF) microscopy. The interaction between the surface and actin is explained by a worm-like chain model that balances the bending energy penalty required for actin to conform to topographical features with the electrostatic attraction engineered into the surface. A Myosin V motility assay demonstrates that electrostatically immobilized actin retains its ability to direct myosin motion, indicating that nanoengineered surfaces are attractive candidates for biomolecular device fabrication.</description><subject>Actin Cytoskeleton - chemistry</subject><subject>Actins - chemistry</subject><subject>Adsorption</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Models, Molecular</subject><subject>Nanotechnology - methods</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Protein Conformation</subject><subject>Silicon Dioxide - chemistry</subject><subject>Static Electricity</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0L1OwzAQwHELgWgpDLwAyoIEQ8DxR-yMVUUBqcBS5ujiXGiqNA52ItGNV-AVeRJStdCF6Zaf7k5_Qs4jehNRFt1WwCljkn4ckGEkGQ2lZuqQDKkSPFQi5gNy4v2SUppwkRyTAWOaJ0msh0Q9Q229gQqDuW3sm4NmsQ6eMC-hRR-0CwzG-QJ9aevAFsH0-_NrbNqyPiVHBVQez3ZzRF6nd_PJQzh7uX-cjGchcCHbEBMhJfZXBVPasP6hzEAmueIsA9R5IqjIJc8jWkBOMw6GsSgTWgkhEGTBR-Rqu7dx9r1D36ar0husKqjRdj6NKBexVDyWPb3eUuOs9w6LtHHlCty6R-mmU_rXqbcXu7VdtsL8T_6G6cHlDsCmTuGgNqXfu5jpWFO1d2B8urSdq_sa_xz8AfaVeoY</recordid><startdate>20120821</startdate><enddate>20120821</enddate><creator>Caporizzo, Matthew A</creator><creator>Sun, Yujie</creator><creator>Goldman, Yale E</creator><creator>Composto, Russell J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120821</creationdate><title>Nanoscale Topography Mediates the Adhesion of F‑Actin</title><author>Caporizzo, Matthew A ; Sun, Yujie ; Goldman, Yale E ; Composto, Russell J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-e9455e9344278c2074bcab53732bae8d9404d53d10fad0b3ac221b487444ea5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actin Cytoskeleton - chemistry</topic><topic>Actins - chemistry</topic><topic>Adsorption</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Models, Molecular</topic><topic>Nanotechnology - methods</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Protein Conformation</topic><topic>Silicon Dioxide - chemistry</topic><topic>Static Electricity</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caporizzo, Matthew A</creatorcontrib><creatorcontrib>Sun, Yujie</creatorcontrib><creatorcontrib>Goldman, Yale E</creatorcontrib><creatorcontrib>Composto, Russell J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caporizzo, Matthew A</au><au>Sun, Yujie</au><au>Goldman, Yale E</au><au>Composto, Russell J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Topography Mediates the Adhesion of F‑Actin</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2012-08-21</date><risdate>2012</risdate><volume>28</volume><issue>33</issue><spage>12216</spage><epage>12224</epage><pages>12216-12224</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Using a controllable nanoengineered surface that alters the dynamics of filamentous actin (F-actin) adhesion, we studied the tunability of biomolecular surface attachment. By grafting aminated nanoparticles, NPs, with diameters ranging from 12 to 85 nm to a random copolymer film, precise control over surface roughness parameters is realized. The ability to selectively generate monodisperse or polydisperse features of varying size and areal density leads to immobilized, side-on wobbly, or end-on F-actin binding as characterized by total internal reflection fluorescence (TIRF) microscopy. The interaction between the surface and actin is explained by a worm-like chain model that balances the bending energy penalty required for actin to conform to topographical features with the electrostatic attraction engineered into the surface. A Myosin V motility assay demonstrates that electrostatically immobilized actin retains its ability to direct myosin motion, indicating that nanoengineered surfaces are attractive candidates for biomolecular device fabrication.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22839968</pmid><doi>10.1021/la302250x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2012-08, Vol.28 (33), p.12216-12224
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1034657365
source MEDLINE; American Chemical Society Journals
subjects Actin Cytoskeleton - chemistry
Actins - chemistry
Adsorption
Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Models, Molecular
Nanotechnology - methods
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Protein Conformation
Silicon Dioxide - chemistry
Static Electricity
Surface Properties
title Nanoscale Topography Mediates the Adhesion of F‑Actin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Topography%20Mediates%20the%20Adhesion%20of%20F%E2%80%91Actin&rft.jtitle=Langmuir&rft.au=Caporizzo,%20Matthew%20A&rft.date=2012-08-21&rft.volume=28&rft.issue=33&rft.spage=12216&rft.epage=12224&rft.pages=12216-12224&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la302250x&rft_dat=%3Cproquest_cross%3E1034657365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034657365&rft_id=info:pmid/22839968&rfr_iscdi=true