The effect of cluster size imbalance and covariates on the estimation performance of quadratic inference functions

Generalized estimating equations (GEE) are commonly used for the analysis of correlated data. However, use of quadratic inference functions (QIFs) is becoming popular because it increases efficiency relative to GEE when the working covariance structure is misspecified. Although shown to be advantage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2012-09, Vol.31 (20), p.2209-2222
Hauptverfasser: Westgate, Philip M., Braun, Thomas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2222
container_issue 20
container_start_page 2209
container_title Statistics in medicine
container_volume 31
creator Westgate, Philip M.
Braun, Thomas M.
description Generalized estimating equations (GEE) are commonly used for the analysis of correlated data. However, use of quadratic inference functions (QIFs) is becoming popular because it increases efficiency relative to GEE when the working covariance structure is misspecified. Although shown to be advantageous in the literature, the impacts of covariates and imbalanced cluster sizes on the estimation performance of the QIF method in finite samples have not been studied. This cluster size variation causes QIF's estimating equations and GEE to be in separate classes when an exchangeable correlation structure is implemented, causing QIF and GEE to be incomparable in terms of efficiency. When utilizing this structure and the number of clusters is not large, we discuss how covariates and cluster size imbalance can cause QIF, rather than GEE, to produce estimates with the larger variability. This occurrence is mainly due to the empirical nature of weighting QIF employs, rather than differences in estimating equations classes. We demonstrate QIF's lost estimation precision through simulation studies covering a variety of general cluster randomized trial scenarios and compare QIF and GEE in the analysis of data from a cluster randomized trial. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.5329
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1034203073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1034203073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4219-7bc2e3ea6330f4985d3e71ef62daf0341d073ca90b58ee6927525951c2dbcc2a3</originalsourceid><addsrcrecordid>eNp1kV1LHDEUhkOxdFdb8BdIwJvejM3HZLK5tFJ3hW2ldEsvQyZzglnnY01m_Pr1ZnRdoeBFCDl58nByXoQOKTmhhLBv0TcngjP1AU0pUTIjTMz20JQwKbNCUjFB-zGuCaFUMPkJTRjLqVD5bIrC6gowOAe2x53Dth5iDwFH_wjYN6WpTWsBm7bCtrs1wZseIu5a3I_PYu8b0_t03EBwXWie4aS5GUwV0o3FvnUQYCy7obUjGz-jj87UEb5s9wP09_zH6myRLS_nF2eny8zmjKpMlpYBB1NwTlyuZqLiICm4glXGEZ7TikhujSKlmAEUiknBhBLUsqq0lhl-gL6-eDehuxlSs7rx0UKdvgTdEDVNEkZ4siT0-D903Q2hTd09U2mpQrwJbehiDOD0JqQBhIcE6TEHnXLQYw4JPdoKh7KBage-Dj4B2Qtw52t4eFek_1z83Aq3vE_53O94E651IbkU-t-vuRaLufxdfCda8ScHQaD-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034103965</pqid></control><display><type>article</type><title>The effect of cluster size imbalance and covariates on the estimation performance of quadratic inference functions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Westgate, Philip M. ; Braun, Thomas M.</creator><creatorcontrib>Westgate, Philip M. ; Braun, Thomas M.</creatorcontrib><description>Generalized estimating equations (GEE) are commonly used for the analysis of correlated data. However, use of quadratic inference functions (QIFs) is becoming popular because it increases efficiency relative to GEE when the working covariance structure is misspecified. Although shown to be advantageous in the literature, the impacts of covariates and imbalanced cluster sizes on the estimation performance of the QIF method in finite samples have not been studied. This cluster size variation causes QIF's estimating equations and GEE to be in separate classes when an exchangeable correlation structure is implemented, causing QIF and GEE to be incomparable in terms of efficiency. When utilizing this structure and the number of clusters is not large, we discuss how covariates and cluster size imbalance can cause QIF, rather than GEE, to produce estimates with the larger variability. This occurrence is mainly due to the empirical nature of weighting QIF employs, rather than differences in estimating equations classes. We demonstrate QIF's lost estimation precision through simulation studies covering a variety of general cluster randomized trial scenarios and compare QIF and GEE in the analysis of data from a cluster randomized trial. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.5329</identifier><identifier>PMID: 22415948</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Anticholesteremic Agents - therapeutic use ; Antihypertensive Agents - therapeutic use ; Aspirin - therapeutic use ; Cardiovascular Diseases - drug therapy ; Clinical trials ; Cluster Analysis ; cluster randomized trial ; Computer Simulation ; Correlation analysis ; Data Interpretation, Statistical ; Design of experiments ; empirical covariance ; estimating equations class ; Estimating techniques ; GEE ; Humans ; Models, Statistical ; Randomized Controlled Trials as Topic - methods ; repeated measures ; Simulation ; Statistical inference</subject><ispartof>Statistics in medicine, 2012-09, Vol.31 (20), p.2209-2222</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Sep 10, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4219-7bc2e3ea6330f4985d3e71ef62daf0341d073ca90b58ee6927525951c2dbcc2a3</citedby><cites>FETCH-LOGICAL-c4219-7bc2e3ea6330f4985d3e71ef62daf0341d073ca90b58ee6927525951c2dbcc2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.5329$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.5329$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22415948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westgate, Philip M.</creatorcontrib><creatorcontrib>Braun, Thomas M.</creatorcontrib><title>The effect of cluster size imbalance and covariates on the estimation performance of quadratic inference functions</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Generalized estimating equations (GEE) are commonly used for the analysis of correlated data. However, use of quadratic inference functions (QIFs) is becoming popular because it increases efficiency relative to GEE when the working covariance structure is misspecified. Although shown to be advantageous in the literature, the impacts of covariates and imbalanced cluster sizes on the estimation performance of the QIF method in finite samples have not been studied. This cluster size variation causes QIF's estimating equations and GEE to be in separate classes when an exchangeable correlation structure is implemented, causing QIF and GEE to be incomparable in terms of efficiency. When utilizing this structure and the number of clusters is not large, we discuss how covariates and cluster size imbalance can cause QIF, rather than GEE, to produce estimates with the larger variability. This occurrence is mainly due to the empirical nature of weighting QIF employs, rather than differences in estimating equations classes. We demonstrate QIF's lost estimation precision through simulation studies covering a variety of general cluster randomized trial scenarios and compare QIF and GEE in the analysis of data from a cluster randomized trial. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>Anticholesteremic Agents - therapeutic use</subject><subject>Antihypertensive Agents - therapeutic use</subject><subject>Aspirin - therapeutic use</subject><subject>Cardiovascular Diseases - drug therapy</subject><subject>Clinical trials</subject><subject>Cluster Analysis</subject><subject>cluster randomized trial</subject><subject>Computer Simulation</subject><subject>Correlation analysis</subject><subject>Data Interpretation, Statistical</subject><subject>Design of experiments</subject><subject>empirical covariance</subject><subject>estimating equations class</subject><subject>Estimating techniques</subject><subject>GEE</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Randomized Controlled Trials as Topic - methods</subject><subject>repeated measures</subject><subject>Simulation</subject><subject>Statistical inference</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1LHDEUhkOxdFdb8BdIwJvejM3HZLK5tFJ3hW2ldEsvQyZzglnnY01m_Pr1ZnRdoeBFCDl58nByXoQOKTmhhLBv0TcngjP1AU0pUTIjTMz20JQwKbNCUjFB-zGuCaFUMPkJTRjLqVD5bIrC6gowOAe2x53Dth5iDwFH_wjYN6WpTWsBm7bCtrs1wZseIu5a3I_PYu8b0_t03EBwXWie4aS5GUwV0o3FvnUQYCy7obUjGz-jj87UEb5s9wP09_zH6myRLS_nF2eny8zmjKpMlpYBB1NwTlyuZqLiICm4glXGEZ7TikhujSKlmAEUiknBhBLUsqq0lhl-gL6-eDehuxlSs7rx0UKdvgTdEDVNEkZ4siT0-D903Q2hTd09U2mpQrwJbehiDOD0JqQBhIcE6TEHnXLQYw4JPdoKh7KBage-Dj4B2Qtw52t4eFek_1z83Aq3vE_53O94E651IbkU-t-vuRaLufxdfCda8ScHQaD-</recordid><startdate>20120910</startdate><enddate>20120910</enddate><creator>Westgate, Philip M.</creator><creator>Braun, Thomas M.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20120910</creationdate><title>The effect of cluster size imbalance and covariates on the estimation performance of quadratic inference functions</title><author>Westgate, Philip M. ; Braun, Thomas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4219-7bc2e3ea6330f4985d3e71ef62daf0341d073ca90b58ee6927525951c2dbcc2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anticholesteremic Agents - therapeutic use</topic><topic>Antihypertensive Agents - therapeutic use</topic><topic>Aspirin - therapeutic use</topic><topic>Cardiovascular Diseases - drug therapy</topic><topic>Clinical trials</topic><topic>Cluster Analysis</topic><topic>cluster randomized trial</topic><topic>Computer Simulation</topic><topic>Correlation analysis</topic><topic>Data Interpretation, Statistical</topic><topic>Design of experiments</topic><topic>empirical covariance</topic><topic>estimating equations class</topic><topic>Estimating techniques</topic><topic>GEE</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Randomized Controlled Trials as Topic - methods</topic><topic>repeated measures</topic><topic>Simulation</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westgate, Philip M.</creatorcontrib><creatorcontrib>Braun, Thomas M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westgate, Philip M.</au><au>Braun, Thomas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of cluster size imbalance and covariates on the estimation performance of quadratic inference functions</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2012-09-10</date><risdate>2012</risdate><volume>31</volume><issue>20</issue><spage>2209</spage><epage>2222</epage><pages>2209-2222</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Generalized estimating equations (GEE) are commonly used for the analysis of correlated data. However, use of quadratic inference functions (QIFs) is becoming popular because it increases efficiency relative to GEE when the working covariance structure is misspecified. Although shown to be advantageous in the literature, the impacts of covariates and imbalanced cluster sizes on the estimation performance of the QIF method in finite samples have not been studied. This cluster size variation causes QIF's estimating equations and GEE to be in separate classes when an exchangeable correlation structure is implemented, causing QIF and GEE to be incomparable in terms of efficiency. When utilizing this structure and the number of clusters is not large, we discuss how covariates and cluster size imbalance can cause QIF, rather than GEE, to produce estimates with the larger variability. This occurrence is mainly due to the empirical nature of weighting QIF employs, rather than differences in estimating equations classes. We demonstrate QIF's lost estimation precision through simulation studies covering a variety of general cluster randomized trial scenarios and compare QIF and GEE in the analysis of data from a cluster randomized trial. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>22415948</pmid><doi>10.1002/sim.5329</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2012-09, Vol.31 (20), p.2209-2222
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_1034203073
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Anticholesteremic Agents - therapeutic use
Antihypertensive Agents - therapeutic use
Aspirin - therapeutic use
Cardiovascular Diseases - drug therapy
Clinical trials
Cluster Analysis
cluster randomized trial
Computer Simulation
Correlation analysis
Data Interpretation, Statistical
Design of experiments
empirical covariance
estimating equations class
Estimating techniques
GEE
Humans
Models, Statistical
Randomized Controlled Trials as Topic - methods
repeated measures
Simulation
Statistical inference
title The effect of cluster size imbalance and covariates on the estimation performance of quadratic inference functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20cluster%20size%20imbalance%20and%20covariates%20on%20the%20estimation%20performance%20of%20quadratic%20inference%20functions&rft.jtitle=Statistics%20in%20medicine&rft.au=Westgate,%20Philip%20M.&rft.date=2012-09-10&rft.volume=31&rft.issue=20&rft.spage=2209&rft.epage=2222&rft.pages=2209-2222&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.5329&rft_dat=%3Cproquest_cross%3E1034203073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034103965&rft_id=info:pmid/22415948&rfr_iscdi=true