Classification of the Four Main Types of Lung Cancer Using a MicroRNA-Based Diagnostic Assay

For patients with primary lung cancer, accurate determination of the tumor type significantly influences treatment decisions. However, techniques and methods for lung cancer typing lack standardization. In particular, owing to limited tumor sample amounts and the poor quality of some samples, the cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of molecular diagnostics : JMD 2012-09, Vol.14 (5), p.510-517
Hauptverfasser: Gilad, Shlomit, Lithwick-Yanai, Gila, Barshack, Iris, Benjamin, Sima, Krivitsky, Irit, Edmonston, Tina Bocker, Bibbo, Marluce, Thurm, Craig, Horowitz, Laurie, Huang, Yajue, Feinmesser, Meora, Steve Hou, J, St. Cyr, Brianna, Burnstein, Ilanit, Gibori, Hadas, Dromi, Nir, Sanden, Mats, Kushnir, Michal, Aharonov, Ranit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 517
container_issue 5
container_start_page 510
container_title The Journal of molecular diagnostics : JMD
container_volume 14
creator Gilad, Shlomit
Lithwick-Yanai, Gila
Barshack, Iris
Benjamin, Sima
Krivitsky, Irit
Edmonston, Tina Bocker
Bibbo, Marluce
Thurm, Craig
Horowitz, Laurie
Huang, Yajue
Feinmesser, Meora
Steve Hou, J
St. Cyr, Brianna
Burnstein, Ilanit
Gibori, Hadas
Dromi, Nir
Sanden, Mats
Kushnir, Michal
Aharonov, Ranit
description For patients with primary lung cancer, accurate determination of the tumor type significantly influences treatment decisions. However, techniques and methods for lung cancer typing lack standardization. In particular, owing to limited tumor sample amounts and the poor quality of some samples, the classification of primary lung cancers using small preoperative biopsy specimens presents a diagnostic challenge using current tools. We previously described a microRNA-based assay (miRview squamous; Rosetta Genomics Ltd., Rehovot, Israel) that accurately differentiates between squamous and nonsquamous non–small cell lung cancer. Herein, we describe the development and validation of an assay that differentiates between the four main types of lung cancer: squamous cell carcinoma, nonsquamous non–small cell lung cancer, carcinoid, and small cell carcinoma. The assay, miRview lung (Rosetta Genomics Ltd.), is based on the expression levels of eight microRNAs, measured using a sensitive quantitative RT-PCR platform. It was validated on an independent set of 451 samples, more than half of which were preoperative cytologic samples (fine-needle aspiration and bronchial brushing and washing). The assay returned a result for more than 90% of the samples with overall accuracy of 94% (95% CI, 91% to 96%), with similar performance observed in pathologic and cytologic samples. Thus, miRview lung is a simple and reliable diagnostic assay that offers an accurate and standardized classification tool for primary lung cancer using pathologic and cytologic samples.
doi_str_mv 10.1016/j.jmoldx.2012.03.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1034201631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525157812001250</els_id><sourcerecordid>1034201631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-96cb3b3f04e9155b995a68778d8218ed9605ae786a6f370d74d9a7eb26c19ada3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEoqXwDRDykUuC_8VOLkjLQgFpCxK0NyTLsSfFIRtvPQlivz2OtnDgwslj670Zz-8VxXNGK0aZejVUwz6O_lfFKeMVFRWl8kFxzlopSt0w9jDXNa9LVuvmrHiCOFDKpFT8cXHGuZatluq8-LYdLWLog7NziBOJPZm_A7mMSyJXNkzk-ngAXJ93y3RLtnZykMgNhnyx5Cq4FL982pRvLIInb4O9nSLOwZENoj0-LR71dkR4dn9eFDeX7663H8rd5_cft5td6aQSc9kq14lO9FRCy-q6a9vaqkbrxjecNeBbRWsLulFW9UJTr6VvrYaOK8da6624KF6e-h5SvFsAZ7MP6GAc7QRxQcOokJmSEixL5UmaP46YoDeHFPY2HbPIrFzNYE5czcrVUGEy12x7cT9h6fbg_5r-gMyC1ycB5D1_BkgGXYAMy4cEbjY-hv9N-LeBG8OUYxl_wBFwyIFMmaFhBrPHfF2zXaNlPMfKayp-AzprnpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034201631</pqid></control><display><type>article</type><title>Classification of the Four Main Types of Lung Cancer Using a MicroRNA-Based Diagnostic Assay</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Gilad, Shlomit ; Lithwick-Yanai, Gila ; Barshack, Iris ; Benjamin, Sima ; Krivitsky, Irit ; Edmonston, Tina Bocker ; Bibbo, Marluce ; Thurm, Craig ; Horowitz, Laurie ; Huang, Yajue ; Feinmesser, Meora ; Steve Hou, J ; St. Cyr, Brianna ; Burnstein, Ilanit ; Gibori, Hadas ; Dromi, Nir ; Sanden, Mats ; Kushnir, Michal ; Aharonov, Ranit</creator><creatorcontrib>Gilad, Shlomit ; Lithwick-Yanai, Gila ; Barshack, Iris ; Benjamin, Sima ; Krivitsky, Irit ; Edmonston, Tina Bocker ; Bibbo, Marluce ; Thurm, Craig ; Horowitz, Laurie ; Huang, Yajue ; Feinmesser, Meora ; Steve Hou, J ; St. Cyr, Brianna ; Burnstein, Ilanit ; Gibori, Hadas ; Dromi, Nir ; Sanden, Mats ; Kushnir, Michal ; Aharonov, Ranit</creatorcontrib><description>For patients with primary lung cancer, accurate determination of the tumor type significantly influences treatment decisions. However, techniques and methods for lung cancer typing lack standardization. In particular, owing to limited tumor sample amounts and the poor quality of some samples, the classification of primary lung cancers using small preoperative biopsy specimens presents a diagnostic challenge using current tools. We previously described a microRNA-based assay (miRview squamous; Rosetta Genomics Ltd., Rehovot, Israel) that accurately differentiates between squamous and nonsquamous non–small cell lung cancer. Herein, we describe the development and validation of an assay that differentiates between the four main types of lung cancer: squamous cell carcinoma, nonsquamous non–small cell lung cancer, carcinoid, and small cell carcinoma. The assay, miRview lung (Rosetta Genomics Ltd.), is based on the expression levels of eight microRNAs, measured using a sensitive quantitative RT-PCR platform. It was validated on an independent set of 451 samples, more than half of which were preoperative cytologic samples (fine-needle aspiration and bronchial brushing and washing). The assay returned a result for more than 90% of the samples with overall accuracy of 94% (95% CI, 91% to 96%), with similar performance observed in pathologic and cytologic samples. Thus, miRview lung is a simple and reliable diagnostic assay that offers an accurate and standardized classification tool for primary lung cancer using pathologic and cytologic samples.</description><identifier>ISSN: 1525-1578</identifier><identifier>EISSN: 1943-7811</identifier><identifier>DOI: 10.1016/j.jmoldx.2012.03.004</identifier><identifier>PMID: 22749746</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Humans ; Lung Neoplasms - classification ; Lung Neoplasms - diagnosis ; Lung Neoplasms - genetics ; MicroRNAs - genetics ; Molecular Diagnostic Techniques - methods ; Oligonucleotide Array Sequence Analysis - methods ; Pathology ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>The Journal of molecular diagnostics : JMD, 2012-09, Vol.14 (5), p.510-517</ispartof><rights>American Society for Investigative Pathology and the Association for Molecular Pathology</rights><rights>2012 American Society for Investigative Pathology and the Association for Molecular Pathology</rights><rights>Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-96cb3b3f04e9155b995a68778d8218ed9605ae786a6f370d74d9a7eb26c19ada3</citedby><cites>FETCH-LOGICAL-c463t-96cb3b3f04e9155b995a68778d8218ed9605ae786a6f370d74d9a7eb26c19ada3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1525157812001250$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22749746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilad, Shlomit</creatorcontrib><creatorcontrib>Lithwick-Yanai, Gila</creatorcontrib><creatorcontrib>Barshack, Iris</creatorcontrib><creatorcontrib>Benjamin, Sima</creatorcontrib><creatorcontrib>Krivitsky, Irit</creatorcontrib><creatorcontrib>Edmonston, Tina Bocker</creatorcontrib><creatorcontrib>Bibbo, Marluce</creatorcontrib><creatorcontrib>Thurm, Craig</creatorcontrib><creatorcontrib>Horowitz, Laurie</creatorcontrib><creatorcontrib>Huang, Yajue</creatorcontrib><creatorcontrib>Feinmesser, Meora</creatorcontrib><creatorcontrib>Steve Hou, J</creatorcontrib><creatorcontrib>St. Cyr, Brianna</creatorcontrib><creatorcontrib>Burnstein, Ilanit</creatorcontrib><creatorcontrib>Gibori, Hadas</creatorcontrib><creatorcontrib>Dromi, Nir</creatorcontrib><creatorcontrib>Sanden, Mats</creatorcontrib><creatorcontrib>Kushnir, Michal</creatorcontrib><creatorcontrib>Aharonov, Ranit</creatorcontrib><title>Classification of the Four Main Types of Lung Cancer Using a MicroRNA-Based Diagnostic Assay</title><title>The Journal of molecular diagnostics : JMD</title><addtitle>J Mol Diagn</addtitle><description>For patients with primary lung cancer, accurate determination of the tumor type significantly influences treatment decisions. However, techniques and methods for lung cancer typing lack standardization. In particular, owing to limited tumor sample amounts and the poor quality of some samples, the classification of primary lung cancers using small preoperative biopsy specimens presents a diagnostic challenge using current tools. We previously described a microRNA-based assay (miRview squamous; Rosetta Genomics Ltd., Rehovot, Israel) that accurately differentiates between squamous and nonsquamous non–small cell lung cancer. Herein, we describe the development and validation of an assay that differentiates between the four main types of lung cancer: squamous cell carcinoma, nonsquamous non–small cell lung cancer, carcinoid, and small cell carcinoma. The assay, miRview lung (Rosetta Genomics Ltd.), is based on the expression levels of eight microRNAs, measured using a sensitive quantitative RT-PCR platform. It was validated on an independent set of 451 samples, more than half of which were preoperative cytologic samples (fine-needle aspiration and bronchial brushing and washing). The assay returned a result for more than 90% of the samples with overall accuracy of 94% (95% CI, 91% to 96%), with similar performance observed in pathologic and cytologic samples. Thus, miRview lung is a simple and reliable diagnostic assay that offers an accurate and standardized classification tool for primary lung cancer using pathologic and cytologic samples.</description><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humans</subject><subject>Lung Neoplasms - classification</subject><subject>Lung Neoplasms - diagnosis</subject><subject>Lung Neoplasms - genetics</subject><subject>MicroRNAs - genetics</subject><subject>Molecular Diagnostic Techniques - methods</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Pathology</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>1525-1578</issn><issn>1943-7811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxSMEoqXwDRDykUuC_8VOLkjLQgFpCxK0NyTLsSfFIRtvPQlivz2OtnDgwslj670Zz-8VxXNGK0aZejVUwz6O_lfFKeMVFRWl8kFxzlopSt0w9jDXNa9LVuvmrHiCOFDKpFT8cXHGuZatluq8-LYdLWLog7NziBOJPZm_A7mMSyJXNkzk-ngAXJ93y3RLtnZykMgNhnyx5Cq4FL982pRvLIInb4O9nSLOwZENoj0-LR71dkR4dn9eFDeX7663H8rd5_cft5td6aQSc9kq14lO9FRCy-q6a9vaqkbrxjecNeBbRWsLulFW9UJTr6VvrYaOK8da6624KF6e-h5SvFsAZ7MP6GAc7QRxQcOokJmSEixL5UmaP46YoDeHFPY2HbPIrFzNYE5czcrVUGEy12x7cT9h6fbg_5r-gMyC1ycB5D1_BkgGXYAMy4cEbjY-hv9N-LeBG8OUYxl_wBFwyIFMmaFhBrPHfF2zXaNlPMfKayp-AzprnpA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Gilad, Shlomit</creator><creator>Lithwick-Yanai, Gila</creator><creator>Barshack, Iris</creator><creator>Benjamin, Sima</creator><creator>Krivitsky, Irit</creator><creator>Edmonston, Tina Bocker</creator><creator>Bibbo, Marluce</creator><creator>Thurm, Craig</creator><creator>Horowitz, Laurie</creator><creator>Huang, Yajue</creator><creator>Feinmesser, Meora</creator><creator>Steve Hou, J</creator><creator>St. Cyr, Brianna</creator><creator>Burnstein, Ilanit</creator><creator>Gibori, Hadas</creator><creator>Dromi, Nir</creator><creator>Sanden, Mats</creator><creator>Kushnir, Michal</creator><creator>Aharonov, Ranit</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120901</creationdate><title>Classification of the Four Main Types of Lung Cancer Using a MicroRNA-Based Diagnostic Assay</title><author>Gilad, Shlomit ; Lithwick-Yanai, Gila ; Barshack, Iris ; Benjamin, Sima ; Krivitsky, Irit ; Edmonston, Tina Bocker ; Bibbo, Marluce ; Thurm, Craig ; Horowitz, Laurie ; Huang, Yajue ; Feinmesser, Meora ; Steve Hou, J ; St. Cyr, Brianna ; Burnstein, Ilanit ; Gibori, Hadas ; Dromi, Nir ; Sanden, Mats ; Kushnir, Michal ; Aharonov, Ranit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-96cb3b3f04e9155b995a68778d8218ed9605ae786a6f370d74d9a7eb26c19ada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humans</topic><topic>Lung Neoplasms - classification</topic><topic>Lung Neoplasms - diagnosis</topic><topic>Lung Neoplasms - genetics</topic><topic>MicroRNAs - genetics</topic><topic>Molecular Diagnostic Techniques - methods</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Pathology</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilad, Shlomit</creatorcontrib><creatorcontrib>Lithwick-Yanai, Gila</creatorcontrib><creatorcontrib>Barshack, Iris</creatorcontrib><creatorcontrib>Benjamin, Sima</creatorcontrib><creatorcontrib>Krivitsky, Irit</creatorcontrib><creatorcontrib>Edmonston, Tina Bocker</creatorcontrib><creatorcontrib>Bibbo, Marluce</creatorcontrib><creatorcontrib>Thurm, Craig</creatorcontrib><creatorcontrib>Horowitz, Laurie</creatorcontrib><creatorcontrib>Huang, Yajue</creatorcontrib><creatorcontrib>Feinmesser, Meora</creatorcontrib><creatorcontrib>Steve Hou, J</creatorcontrib><creatorcontrib>St. Cyr, Brianna</creatorcontrib><creatorcontrib>Burnstein, Ilanit</creatorcontrib><creatorcontrib>Gibori, Hadas</creatorcontrib><creatorcontrib>Dromi, Nir</creatorcontrib><creatorcontrib>Sanden, Mats</creatorcontrib><creatorcontrib>Kushnir, Michal</creatorcontrib><creatorcontrib>Aharonov, Ranit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of molecular diagnostics : JMD</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilad, Shlomit</au><au>Lithwick-Yanai, Gila</au><au>Barshack, Iris</au><au>Benjamin, Sima</au><au>Krivitsky, Irit</au><au>Edmonston, Tina Bocker</au><au>Bibbo, Marluce</au><au>Thurm, Craig</au><au>Horowitz, Laurie</au><au>Huang, Yajue</au><au>Feinmesser, Meora</au><au>Steve Hou, J</au><au>St. Cyr, Brianna</au><au>Burnstein, Ilanit</au><au>Gibori, Hadas</au><au>Dromi, Nir</au><au>Sanden, Mats</au><au>Kushnir, Michal</au><au>Aharonov, Ranit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of the Four Main Types of Lung Cancer Using a MicroRNA-Based Diagnostic Assay</atitle><jtitle>The Journal of molecular diagnostics : JMD</jtitle><addtitle>J Mol Diagn</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>14</volume><issue>5</issue><spage>510</spage><epage>517</epage><pages>510-517</pages><issn>1525-1578</issn><eissn>1943-7811</eissn><abstract>For patients with primary lung cancer, accurate determination of the tumor type significantly influences treatment decisions. However, techniques and methods for lung cancer typing lack standardization. In particular, owing to limited tumor sample amounts and the poor quality of some samples, the classification of primary lung cancers using small preoperative biopsy specimens presents a diagnostic challenge using current tools. We previously described a microRNA-based assay (miRview squamous; Rosetta Genomics Ltd., Rehovot, Israel) that accurately differentiates between squamous and nonsquamous non–small cell lung cancer. Herein, we describe the development and validation of an assay that differentiates between the four main types of lung cancer: squamous cell carcinoma, nonsquamous non–small cell lung cancer, carcinoid, and small cell carcinoma. The assay, miRview lung (Rosetta Genomics Ltd.), is based on the expression levels of eight microRNAs, measured using a sensitive quantitative RT-PCR platform. It was validated on an independent set of 451 samples, more than half of which were preoperative cytologic samples (fine-needle aspiration and bronchial brushing and washing). The assay returned a result for more than 90% of the samples with overall accuracy of 94% (95% CI, 91% to 96%), with similar performance observed in pathologic and cytologic samples. Thus, miRview lung is a simple and reliable diagnostic assay that offers an accurate and standardized classification tool for primary lung cancer using pathologic and cytologic samples.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22749746</pmid><doi>10.1016/j.jmoldx.2012.03.004</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-1578
ispartof The Journal of molecular diagnostics : JMD, 2012-09, Vol.14 (5), p.510-517
issn 1525-1578
1943-7811
language eng
recordid cdi_proquest_miscellaneous_1034201631
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Humans
Lung Neoplasms - classification
Lung Neoplasms - diagnosis
Lung Neoplasms - genetics
MicroRNAs - genetics
Molecular Diagnostic Techniques - methods
Oligonucleotide Array Sequence Analysis - methods
Pathology
Reproducibility of Results
Sensitivity and Specificity
title Classification of the Four Main Types of Lung Cancer Using a MicroRNA-Based Diagnostic Assay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20the%20Four%20Main%20Types%20of%20Lung%20Cancer%20Using%20a%20MicroRNA-Based%20Diagnostic%20Assay&rft.jtitle=The%20Journal%20of%20molecular%20diagnostics%20:%20JMD&rft.au=Gilad,%20Shlomit&rft.date=2012-09-01&rft.volume=14&rft.issue=5&rft.spage=510&rft.epage=517&rft.pages=510-517&rft.issn=1525-1578&rft.eissn=1943-7811&rft_id=info:doi/10.1016/j.jmoldx.2012.03.004&rft_dat=%3Cproquest_cross%3E1034201631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034201631&rft_id=info:pmid/22749746&rft_els_id=S1525157812001250&rfr_iscdi=true