Epitaxial III-V Films and Surfaces for Photoelectrocatalysis

Efficient photoelectrochemical devices for water splitting benefit from the highest material quality and dedicated surface preparation achieved by epitaxial growth. InP(100)‐based half‐cells show significant solar‐to‐hydrogen efficiencies, but require a bias due to insufficient voltage. Tandem absor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemPhysChem (Print) 2012-08, Vol.13 (12), p.2899-2909
Hauptverfasser: Döscher, Henning, Supplie, Oliver, May, Matthias M., Sippel, Philipp, Heine, Christian, Muñoz, Andrés G., Eichberger, Rainer, Lewerenz, Hans-Joachim, Hannappel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient photoelectrochemical devices for water splitting benefit from the highest material quality and dedicated surface preparation achieved by epitaxial growth. InP(100)‐based half‐cells show significant solar‐to‐hydrogen efficiencies, but require a bias due to insufficient voltage. Tandem absorber structures may provide both adequate potential and efficient utilization of the solar spectrum. We propose epitaxial dilute nitride GaPNAs photocathodes on Si(100) substrates to combine close‐to‐optimum limiting efficiency, lattice‐matched growth, and established surface preparation. Prior to a discussion of the challenging III–V/Si(100) heterojunction, we describe the closely related epitaxial preparation of InP(100) surfaces and its beneficial impact on photoelectrochemical water‐splitting performance. Analogies and specific differences to GaP(100) surfaces are discussed based on in situ reflectance anisotropy and on two‐photon photoemission results. Preliminary experiments regarding GaP/Si(100) photoelectrochemistry and dilute nitride GaPN heteroepitaxy on Si(100) confirm the potential of the GaPNAs/Si tandem absorber structure for future water‐splitting devices. Built for two: InP(100)‐based half‐cells show significant solar‐to‐hydrogen efficiencies, but require a bias due to insufficient voltage. Tandem absorber structures may provide both adequate potential and efficient utilization of the solar spectrum. The picture shows contour lines of calculated limiting conversion efficiencies for ideal monolithic tandem solar cells.
ISSN:1439-4235
1439-7641
DOI:10.1002/cphc.201200390