Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent
A mesoscopic coarse-grain model for computationally efficient simulations of biomembranes is presented. It combines molecular dynamics simulations for the lipids, modeled as elastic chains of beads, with multiparticle collision dynamics for the solvent. Self-assembly of a membrane from a uniform mix...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2012-08, Vol.137 (5), p.055101-055101 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 055101 |
---|---|
container_issue | 5 |
container_start_page | 055101 |
container_title | The Journal of chemical physics |
container_volume | 137 |
creator | Huang, Mu-Jie Kapral, Raymond Mikhailov, Alexander S Chen, Hsuan-Yi |
description | A mesoscopic coarse-grain model for computationally efficient simulations of biomembranes is presented. It combines molecular dynamics simulations for the lipids, modeled as elastic chains of beads, with multiparticle collision dynamics for the solvent. Self-assembly of a membrane from a uniform mixture of lipids is observed. Simulations at different temperatures demonstrate that it reproduces the gel and liquid phases of lipid bilayers. Investigations of lipid diffusion in different phases reveals a crossover from subdiffusion to normal diffusion at long times. Macroscopic membrane properties, such as stretching and bending elastic moduli, are determined directly from the mesoscopic simulations. Velocity correlation functions for membrane flows are determined and analyzed. |
doi_str_mv | 10.1063/1.4736414 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1034200696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1034200696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-155c7b051ed6e5ef5c25bce49a190e0c7cefa4ddf1bf589e32314db0f2d965f3</originalsourceid><addsrcrecordid>eNo90D1v2zAQxnEiaJA4L0O_QMGxGZQcxReZ2QojaQoE6OJdoMhjy4ISVZ4cwN8-Dux2uht-eIY_Y58F3Asw8kHcq04aJdQZWwlY26YzFj6xFUArGmvAXLIroj8AILpWXbDLtl1bJddyxWhTXCVsflWXJj6WgJnHUnlOcwp8SNntsXLCHBtHhOOQ99xNgYf95Mbk6ZGPu7yk2dUl-Yzcl5wTpTLxgORrmpePv0S-_EZOJb_htNyw8-gy4e3pXrPt89N289K8_vz-Y_PttfFSi6URWvtuAC0wGNQYtW_14FFZJywg-M5jdCqEKIao1xZlK4UKA8Q2WKOjvGZfj7NzLX93SEs_JvKYs5uw7KgXIFULYKw50Lsj9bUQVYz9XNPo6v6A-o_EvehPiQ_2y2l2N4wY_st_TeU7_yp4oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034200696</pqid></control><display><type>article</type><title>Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent</title><source>MEDLINE</source><source>AIP Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Huang, Mu-Jie ; Kapral, Raymond ; Mikhailov, Alexander S ; Chen, Hsuan-Yi</creator><creatorcontrib>Huang, Mu-Jie ; Kapral, Raymond ; Mikhailov, Alexander S ; Chen, Hsuan-Yi</creatorcontrib><description>A mesoscopic coarse-grain model for computationally efficient simulations of biomembranes is presented. It combines molecular dynamics simulations for the lipids, modeled as elastic chains of beads, with multiparticle collision dynamics for the solvent. Self-assembly of a membrane from a uniform mixture of lipids is observed. Simulations at different temperatures demonstrate that it reproduces the gel and liquid phases of lipid bilayers. Investigations of lipid diffusion in different phases reveals a crossover from subdiffusion to normal diffusion at long times. Macroscopic membrane properties, such as stretching and bending elastic moduli, are determined directly from the mesoscopic simulations. Velocity correlation functions for membrane flows are determined and analyzed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4736414</identifier><identifier>PMID: 22894383</identifier><language>eng</language><publisher>United States</publisher><subject>Lipid Bilayers - chemistry ; Membrane Fluidity ; Membranes - chemistry ; Models, Chemical ; Molecular Dynamics Simulation ; Solvents - chemistry ; Temperature ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2012-08, Vol.137 (5), p.055101-055101</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-155c7b051ed6e5ef5c25bce49a190e0c7cefa4ddf1bf589e32314db0f2d965f3</citedby><cites>FETCH-LOGICAL-c351t-155c7b051ed6e5ef5c25bce49a190e0c7cefa4ddf1bf589e32314db0f2d965f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22894383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Mu-Jie</creatorcontrib><creatorcontrib>Kapral, Raymond</creatorcontrib><creatorcontrib>Mikhailov, Alexander S</creatorcontrib><creatorcontrib>Chen, Hsuan-Yi</creatorcontrib><title>Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A mesoscopic coarse-grain model for computationally efficient simulations of biomembranes is presented. It combines molecular dynamics simulations for the lipids, modeled as elastic chains of beads, with multiparticle collision dynamics for the solvent. Self-assembly of a membrane from a uniform mixture of lipids is observed. Simulations at different temperatures demonstrate that it reproduces the gel and liquid phases of lipid bilayers. Investigations of lipid diffusion in different phases reveals a crossover from subdiffusion to normal diffusion at long times. Macroscopic membrane properties, such as stretching and bending elastic moduli, are determined directly from the mesoscopic simulations. Velocity correlation functions for membrane flows are determined and analyzed.</description><subject>Lipid Bilayers - chemistry</subject><subject>Membrane Fluidity</subject><subject>Membranes - chemistry</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Solvents - chemistry</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90D1v2zAQxnEiaJA4L0O_QMGxGZQcxReZ2QojaQoE6OJdoMhjy4ISVZ4cwN8-Dux2uht-eIY_Y58F3Asw8kHcq04aJdQZWwlY26YzFj6xFUArGmvAXLIroj8AILpWXbDLtl1bJddyxWhTXCVsflWXJj6WgJnHUnlOcwp8SNntsXLCHBtHhOOQ99xNgYf95Mbk6ZGPu7yk2dUl-Yzcl5wTpTLxgORrmpePv0S-_EZOJb_htNyw8-gy4e3pXrPt89N289K8_vz-Y_PttfFSi6URWvtuAC0wGNQYtW_14FFZJywg-M5jdCqEKIao1xZlK4UKA8Q2WKOjvGZfj7NzLX93SEs_JvKYs5uw7KgXIFULYKw50Lsj9bUQVYz9XNPo6v6A-o_EvehPiQ_2y2l2N4wY_st_TeU7_yp4oA</recordid><startdate>20120807</startdate><enddate>20120807</enddate><creator>Huang, Mu-Jie</creator><creator>Kapral, Raymond</creator><creator>Mikhailov, Alexander S</creator><creator>Chen, Hsuan-Yi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120807</creationdate><title>Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent</title><author>Huang, Mu-Jie ; Kapral, Raymond ; Mikhailov, Alexander S ; Chen, Hsuan-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-155c7b051ed6e5ef5c25bce49a190e0c7cefa4ddf1bf589e32314db0f2d965f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Lipid Bilayers - chemistry</topic><topic>Membrane Fluidity</topic><topic>Membranes - chemistry</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Solvents - chemistry</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mu-Jie</creatorcontrib><creatorcontrib>Kapral, Raymond</creatorcontrib><creatorcontrib>Mikhailov, Alexander S</creatorcontrib><creatorcontrib>Chen, Hsuan-Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Mu-Jie</au><au>Kapral, Raymond</au><au>Mikhailov, Alexander S</au><au>Chen, Hsuan-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2012-08-07</date><risdate>2012</risdate><volume>137</volume><issue>5</issue><spage>055101</spage><epage>055101</epage><pages>055101-055101</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>A mesoscopic coarse-grain model for computationally efficient simulations of biomembranes is presented. It combines molecular dynamics simulations for the lipids, modeled as elastic chains of beads, with multiparticle collision dynamics for the solvent. Self-assembly of a membrane from a uniform mixture of lipids is observed. Simulations at different temperatures demonstrate that it reproduces the gel and liquid phases of lipid bilayers. Investigations of lipid diffusion in different phases reveals a crossover from subdiffusion to normal diffusion at long times. Macroscopic membrane properties, such as stretching and bending elastic moduli, are determined directly from the mesoscopic simulations. Velocity correlation functions for membrane flows are determined and analyzed.</abstract><cop>United States</cop><pmid>22894383</pmid><doi>10.1063/1.4736414</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2012-08, Vol.137 (5), p.055101-055101 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1034200696 |
source | MEDLINE; AIP Journals; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Lipid Bilayers - chemistry Membrane Fluidity Membranes - chemistry Models, Chemical Molecular Dynamics Simulation Solvents - chemistry Temperature Thermodynamics |
title | Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse-grain%20model%20for%20lipid%20bilayer%20self-assembly%20and%20dynamics:%20multiparticle%20collision%20description%20of%20the%20solvent&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Huang,%20Mu-Jie&rft.date=2012-08-07&rft.volume=137&rft.issue=5&rft.spage=055101&rft.epage=055101&rft.pages=055101-055101&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4736414&rft_dat=%3Cproquest_cross%3E1034200696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034200696&rft_id=info:pmid/22894383&rfr_iscdi=true |