Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent

A mesoscopic coarse-grain model for computationally efficient simulations of biomembranes is presented. It combines molecular dynamics simulations for the lipids, modeled as elastic chains of beads, with multiparticle collision dynamics for the solvent. Self-assembly of a membrane from a uniform mix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2012-08, Vol.137 (5), p.055101-055101
Hauptverfasser: Huang, Mu-Jie, Kapral, Raymond, Mikhailov, Alexander S, Chen, Hsuan-Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 055101
container_issue 5
container_start_page 055101
container_title The Journal of chemical physics
container_volume 137
creator Huang, Mu-Jie
Kapral, Raymond
Mikhailov, Alexander S
Chen, Hsuan-Yi
description A mesoscopic coarse-grain model for computationally efficient simulations of biomembranes is presented. It combines molecular dynamics simulations for the lipids, modeled as elastic chains of beads, with multiparticle collision dynamics for the solvent. Self-assembly of a membrane from a uniform mixture of lipids is observed. Simulations at different temperatures demonstrate that it reproduces the gel and liquid phases of lipid bilayers. Investigations of lipid diffusion in different phases reveals a crossover from subdiffusion to normal diffusion at long times. Macroscopic membrane properties, such as stretching and bending elastic moduli, are determined directly from the mesoscopic simulations. Velocity correlation functions for membrane flows are determined and analyzed.
doi_str_mv 10.1063/1.4736414
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1034200696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1034200696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-155c7b051ed6e5ef5c25bce49a190e0c7cefa4ddf1bf589e32314db0f2d965f3</originalsourceid><addsrcrecordid>eNo90D1v2zAQxnEiaJA4L0O_QMGxGZQcxReZ2QojaQoE6OJdoMhjy4ISVZ4cwN8-Dux2uht-eIY_Y58F3Asw8kHcq04aJdQZWwlY26YzFj6xFUArGmvAXLIroj8AILpWXbDLtl1bJddyxWhTXCVsflWXJj6WgJnHUnlOcwp8SNntsXLCHBtHhOOQ99xNgYf95Mbk6ZGPu7yk2dUl-Yzcl5wTpTLxgORrmpePv0S-_EZOJb_htNyw8-gy4e3pXrPt89N289K8_vz-Y_PttfFSi6URWvtuAC0wGNQYtW_14FFZJywg-M5jdCqEKIao1xZlK4UKA8Q2WKOjvGZfj7NzLX93SEs_JvKYs5uw7KgXIFULYKw50Lsj9bUQVYz9XNPo6v6A-o_EvehPiQ_2y2l2N4wY_st_TeU7_yp4oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034200696</pqid></control><display><type>article</type><title>Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent</title><source>MEDLINE</source><source>AIP Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Huang, Mu-Jie ; Kapral, Raymond ; Mikhailov, Alexander S ; Chen, Hsuan-Yi</creator><creatorcontrib>Huang, Mu-Jie ; Kapral, Raymond ; Mikhailov, Alexander S ; Chen, Hsuan-Yi</creatorcontrib><description>A mesoscopic coarse-grain model for computationally efficient simulations of biomembranes is presented. It combines molecular dynamics simulations for the lipids, modeled as elastic chains of beads, with multiparticle collision dynamics for the solvent. Self-assembly of a membrane from a uniform mixture of lipids is observed. Simulations at different temperatures demonstrate that it reproduces the gel and liquid phases of lipid bilayers. Investigations of lipid diffusion in different phases reveals a crossover from subdiffusion to normal diffusion at long times. Macroscopic membrane properties, such as stretching and bending elastic moduli, are determined directly from the mesoscopic simulations. Velocity correlation functions for membrane flows are determined and analyzed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4736414</identifier><identifier>PMID: 22894383</identifier><language>eng</language><publisher>United States</publisher><subject>Lipid Bilayers - chemistry ; Membrane Fluidity ; Membranes - chemistry ; Models, Chemical ; Molecular Dynamics Simulation ; Solvents - chemistry ; Temperature ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2012-08, Vol.137 (5), p.055101-055101</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-155c7b051ed6e5ef5c25bce49a190e0c7cefa4ddf1bf589e32314db0f2d965f3</citedby><cites>FETCH-LOGICAL-c351t-155c7b051ed6e5ef5c25bce49a190e0c7cefa4ddf1bf589e32314db0f2d965f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22894383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Mu-Jie</creatorcontrib><creatorcontrib>Kapral, Raymond</creatorcontrib><creatorcontrib>Mikhailov, Alexander S</creatorcontrib><creatorcontrib>Chen, Hsuan-Yi</creatorcontrib><title>Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A mesoscopic coarse-grain model for computationally efficient simulations of biomembranes is presented. It combines molecular dynamics simulations for the lipids, modeled as elastic chains of beads, with multiparticle collision dynamics for the solvent. Self-assembly of a membrane from a uniform mixture of lipids is observed. Simulations at different temperatures demonstrate that it reproduces the gel and liquid phases of lipid bilayers. Investigations of lipid diffusion in different phases reveals a crossover from subdiffusion to normal diffusion at long times. Macroscopic membrane properties, such as stretching and bending elastic moduli, are determined directly from the mesoscopic simulations. Velocity correlation functions for membrane flows are determined and analyzed.</description><subject>Lipid Bilayers - chemistry</subject><subject>Membrane Fluidity</subject><subject>Membranes - chemistry</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Solvents - chemistry</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90D1v2zAQxnEiaJA4L0O_QMGxGZQcxReZ2QojaQoE6OJdoMhjy4ISVZ4cwN8-Dux2uht-eIY_Y58F3Asw8kHcq04aJdQZWwlY26YzFj6xFUArGmvAXLIroj8AILpWXbDLtl1bJddyxWhTXCVsflWXJj6WgJnHUnlOcwp8SNntsXLCHBtHhOOQ99xNgYf95Mbk6ZGPu7yk2dUl-Yzcl5wTpTLxgORrmpePv0S-_EZOJb_htNyw8-gy4e3pXrPt89N289K8_vz-Y_PttfFSi6URWvtuAC0wGNQYtW_14FFZJywg-M5jdCqEKIao1xZlK4UKA8Q2WKOjvGZfj7NzLX93SEs_JvKYs5uw7KgXIFULYKw50Lsj9bUQVYz9XNPo6v6A-o_EvehPiQ_2y2l2N4wY_st_TeU7_yp4oA</recordid><startdate>20120807</startdate><enddate>20120807</enddate><creator>Huang, Mu-Jie</creator><creator>Kapral, Raymond</creator><creator>Mikhailov, Alexander S</creator><creator>Chen, Hsuan-Yi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120807</creationdate><title>Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent</title><author>Huang, Mu-Jie ; Kapral, Raymond ; Mikhailov, Alexander S ; Chen, Hsuan-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-155c7b051ed6e5ef5c25bce49a190e0c7cefa4ddf1bf589e32314db0f2d965f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Lipid Bilayers - chemistry</topic><topic>Membrane Fluidity</topic><topic>Membranes - chemistry</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Solvents - chemistry</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mu-Jie</creatorcontrib><creatorcontrib>Kapral, Raymond</creatorcontrib><creatorcontrib>Mikhailov, Alexander S</creatorcontrib><creatorcontrib>Chen, Hsuan-Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Mu-Jie</au><au>Kapral, Raymond</au><au>Mikhailov, Alexander S</au><au>Chen, Hsuan-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2012-08-07</date><risdate>2012</risdate><volume>137</volume><issue>5</issue><spage>055101</spage><epage>055101</epage><pages>055101-055101</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>A mesoscopic coarse-grain model for computationally efficient simulations of biomembranes is presented. It combines molecular dynamics simulations for the lipids, modeled as elastic chains of beads, with multiparticle collision dynamics for the solvent. Self-assembly of a membrane from a uniform mixture of lipids is observed. Simulations at different temperatures demonstrate that it reproduces the gel and liquid phases of lipid bilayers. Investigations of lipid diffusion in different phases reveals a crossover from subdiffusion to normal diffusion at long times. Macroscopic membrane properties, such as stretching and bending elastic moduli, are determined directly from the mesoscopic simulations. Velocity correlation functions for membrane flows are determined and analyzed.</abstract><cop>United States</cop><pmid>22894383</pmid><doi>10.1063/1.4736414</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2012-08, Vol.137 (5), p.055101-055101
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1034200696
source MEDLINE; AIP Journals; AIP Digital Archive; Alma/SFX Local Collection
subjects Lipid Bilayers - chemistry
Membrane Fluidity
Membranes - chemistry
Models, Chemical
Molecular Dynamics Simulation
Solvents - chemistry
Temperature
Thermodynamics
title Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse-grain%20model%20for%20lipid%20bilayer%20self-assembly%20and%20dynamics:%20multiparticle%20collision%20description%20of%20the%20solvent&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Huang,%20Mu-Jie&rft.date=2012-08-07&rft.volume=137&rft.issue=5&rft.spage=055101&rft.epage=055101&rft.pages=055101-055101&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4736414&rft_dat=%3Cproquest_cross%3E1034200696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034200696&rft_id=info:pmid/22894383&rfr_iscdi=true