Cross hedging with stochastic correlation
This paper is concerned with the study of quadratic hedging of contingent claims with basis risk. We extend existing results by allowing the correlation between the hedging instrument and the underlying of the contingent claim to be random itself. We assume that the correlation process ρ evolves acc...
Gespeichert in:
Veröffentlicht in: | Finance and stochastics 2012, Vol.16 (1), p.17-43 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Finance and stochastics |
container_volume | 16 |
creator | Ankirchner, Stefan Heyne, Gregor |
description | This paper is concerned with the study of quadratic hedging of contingent claims with basis risk. We extend existing results by allowing the correlation between the hedging instrument and the underlying of the contingent claim to be random itself. We assume that the correlation process
ρ
evolves according to a stochastic differential equation with values between the boundaries −1 and 1. We keep the correlation dynamics general and derive an integrability condition on the correlation process that allows to describe and compute the quadratic hedge by means of a simple hedging formula that can be directly implemented. Furthermore, we show that the conditions on
ρ
are fulfilled by a large class of dynamics. The theory is exemplified by various explicitly given correlation dynamics. |
doi_str_mv | 10.1007/s00780-010-0148-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1033283730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1033283730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-25e63b7b7fc0ef42a0cf9c3edb93113a836be4351fb1acb154da1f5b689f29ec3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG_Fkx6iM0m6bY6y-A8WvOg5JNlkt0u3WZMW8dubUkEQPMzM5b3HvB8hlwi3CFDdpbxqoIDjiJqyIzJDwRlFZOyYzEAKSZmsxSk5S2kHAKyEckZuljGkVGzdetN0m-Kz6bdF6oPd6tQ3trAhRtfqvgndOTnxuk3u4ufOyfvjw9vyma5en16W9ytqeQ09ZaVbcFOZyltwXjAN1kvL3dpIjsh1zRfGCV6iN6itwVKsNfrSLGrpmXSWz8n1lHuI4WNwqVf7JlnXtrpzYUgKgXNW84pDll79ke7CELv8nZKYG3PMMyc4iezYNDqvDrHZ6_iVk9TITk3sVGanRnaKZQ-bPClru42Lv8H_m74BRKZwUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>910943194</pqid></control><display><type>article</type><title>Cross hedging with stochastic correlation</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ankirchner, Stefan ; Heyne, Gregor</creator><creatorcontrib>Ankirchner, Stefan ; Heyne, Gregor</creatorcontrib><description>This paper is concerned with the study of quadratic hedging of contingent claims with basis risk. We extend existing results by allowing the correlation between the hedging instrument and the underlying of the contingent claim to be random itself. We assume that the correlation process
ρ
evolves according to a stochastic differential equation with values between the boundaries −1 and 1. We keep the correlation dynamics general and derive an integrability condition on the correlation process that allows to describe and compute the quadratic hedge by means of a simple hedging formula that can be directly implemented. Furthermore, we show that the conditions on
ρ
are fulfilled by a large class of dynamics. The theory is exemplified by various explicitly given correlation dynamics.</description><identifier>ISSN: 0949-2984</identifier><identifier>EISSN: 1432-1122</identifier><identifier>DOI: 10.1007/s00780-010-0148-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Correlation ; Differential analysis ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Expected values ; Finance ; Futures ; Hedging ; Insurance ; Management ; Market ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Money markets ; Prices ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Reductionism ; Risk ; Statistics for Business ; Stochastic models ; Stock exchanges ; Studies</subject><ispartof>Finance and stochastics, 2012, Vol.16 (1), p.17-43</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-25e63b7b7fc0ef42a0cf9c3edb93113a836be4351fb1acb154da1f5b689f29ec3</citedby><cites>FETCH-LOGICAL-c380t-25e63b7b7fc0ef42a0cf9c3edb93113a836be4351fb1acb154da1f5b689f29ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00780-010-0148-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00780-010-0148-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ankirchner, Stefan</creatorcontrib><creatorcontrib>Heyne, Gregor</creatorcontrib><title>Cross hedging with stochastic correlation</title><title>Finance and stochastics</title><addtitle>Finance Stoch</addtitle><description>This paper is concerned with the study of quadratic hedging of contingent claims with basis risk. We extend existing results by allowing the correlation between the hedging instrument and the underlying of the contingent claim to be random itself. We assume that the correlation process
ρ
evolves according to a stochastic differential equation with values between the boundaries −1 and 1. We keep the correlation dynamics general and derive an integrability condition on the correlation process that allows to describe and compute the quadratic hedge by means of a simple hedging formula that can be directly implemented. Furthermore, we show that the conditions on
ρ
are fulfilled by a large class of dynamics. The theory is exemplified by various explicitly given correlation dynamics.</description><subject>Correlation</subject><subject>Differential analysis</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Expected values</subject><subject>Finance</subject><subject>Futures</subject><subject>Hedging</subject><subject>Insurance</subject><subject>Management</subject><subject>Market</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Money markets</subject><subject>Prices</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Reductionism</subject><subject>Risk</subject><subject>Statistics for Business</subject><subject>Stochastic models</subject><subject>Stock exchanges</subject><subject>Studies</subject><issn>0949-2984</issn><issn>1432-1122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG_Fkx6iM0m6bY6y-A8WvOg5JNlkt0u3WZMW8dubUkEQPMzM5b3HvB8hlwi3CFDdpbxqoIDjiJqyIzJDwRlFZOyYzEAKSZmsxSk5S2kHAKyEckZuljGkVGzdetN0m-Kz6bdF6oPd6tQ3trAhRtfqvgndOTnxuk3u4ufOyfvjw9vyma5en16W9ytqeQ09ZaVbcFOZyltwXjAN1kvL3dpIjsh1zRfGCV6iN6itwVKsNfrSLGrpmXSWz8n1lHuI4WNwqVf7JlnXtrpzYUgKgXNW84pDll79ke7CELv8nZKYG3PMMyc4iezYNDqvDrHZ6_iVk9TITk3sVGanRnaKZQ-bPClru42Lv8H_m74BRKZwUw</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Ankirchner, Stefan</creator><creator>Heyne, Gregor</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2012</creationdate><title>Cross hedging with stochastic correlation</title><author>Ankirchner, Stefan ; Heyne, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-25e63b7b7fc0ef42a0cf9c3edb93113a836be4351fb1acb154da1f5b689f29ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Correlation</topic><topic>Differential analysis</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Expected values</topic><topic>Finance</topic><topic>Futures</topic><topic>Hedging</topic><topic>Insurance</topic><topic>Management</topic><topic>Market</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Money markets</topic><topic>Prices</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Reductionism</topic><topic>Risk</topic><topic>Statistics for Business</topic><topic>Stochastic models</topic><topic>Stock exchanges</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ankirchner, Stefan</creatorcontrib><creatorcontrib>Heyne, Gregor</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Finance and stochastics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ankirchner, Stefan</au><au>Heyne, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross hedging with stochastic correlation</atitle><jtitle>Finance and stochastics</jtitle><stitle>Finance Stoch</stitle><date>2012</date><risdate>2012</risdate><volume>16</volume><issue>1</issue><spage>17</spage><epage>43</epage><pages>17-43</pages><issn>0949-2984</issn><eissn>1432-1122</eissn><abstract>This paper is concerned with the study of quadratic hedging of contingent claims with basis risk. We extend existing results by allowing the correlation between the hedging instrument and the underlying of the contingent claim to be random itself. We assume that the correlation process
ρ
evolves according to a stochastic differential equation with values between the boundaries −1 and 1. We keep the correlation dynamics general and derive an integrability condition on the correlation process that allows to describe and compute the quadratic hedge by means of a simple hedging formula that can be directly implemented. Furthermore, we show that the conditions on
ρ
are fulfilled by a large class of dynamics. The theory is exemplified by various explicitly given correlation dynamics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00780-010-0148-2</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-2984 |
ispartof | Finance and stochastics, 2012, Vol.16 (1), p.17-43 |
issn | 0949-2984 1432-1122 |
language | eng |
recordid | cdi_proquest_miscellaneous_1033283730 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Correlation Differential analysis Economic Theory/Quantitative Economics/Mathematical Methods Economics Expected values Finance Futures Hedging Insurance Management Market Mathematical analysis Mathematics Mathematics and Statistics Money markets Prices Probability Theory and Stochastic Processes Quantitative Finance Reductionism Risk Statistics for Business Stochastic models Stock exchanges Studies |
title | Cross hedging with stochastic correlation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross%20hedging%20with%20stochastic%20correlation&rft.jtitle=Finance%20and%20stochastics&rft.au=Ankirchner,%20Stefan&rft.date=2012&rft.volume=16&rft.issue=1&rft.spage=17&rft.epage=43&rft.pages=17-43&rft.issn=0949-2984&rft.eissn=1432-1122&rft_id=info:doi/10.1007/s00780-010-0148-2&rft_dat=%3Cproquest_cross%3E1033283730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=910943194&rft_id=info:pmid/&rfr_iscdi=true |