Cross hedging with stochastic correlation

This paper is concerned with the study of quadratic hedging of contingent claims with basis risk. We extend existing results by allowing the correlation between the hedging instrument and the underlying of the contingent claim to be random itself. We assume that the correlation process ρ evolves acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finance and stochastics 2012, Vol.16 (1), p.17-43
Hauptverfasser: Ankirchner, Stefan, Heyne, Gregor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 1
container_start_page 17
container_title Finance and stochastics
container_volume 16
creator Ankirchner, Stefan
Heyne, Gregor
description This paper is concerned with the study of quadratic hedging of contingent claims with basis risk. We extend existing results by allowing the correlation between the hedging instrument and the underlying of the contingent claim to be random itself. We assume that the correlation process ρ evolves according to a stochastic differential equation with values between the boundaries −1 and 1. We keep the correlation dynamics general and derive an integrability condition on the correlation process that allows to describe and compute the quadratic hedge by means of a simple hedging formula that can be directly implemented. Furthermore, we show that the conditions on ρ are fulfilled by a large class of dynamics. The theory is exemplified by various explicitly given correlation dynamics.
doi_str_mv 10.1007/s00780-010-0148-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1033283730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1033283730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-25e63b7b7fc0ef42a0cf9c3edb93113a836be4351fb1acb154da1f5b689f29ec3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG_Fkx6iM0m6bY6y-A8WvOg5JNlkt0u3WZMW8dubUkEQPMzM5b3HvB8hlwi3CFDdpbxqoIDjiJqyIzJDwRlFZOyYzEAKSZmsxSk5S2kHAKyEckZuljGkVGzdetN0m-Kz6bdF6oPd6tQ3trAhRtfqvgndOTnxuk3u4ufOyfvjw9vyma5en16W9ytqeQ09ZaVbcFOZyltwXjAN1kvL3dpIjsh1zRfGCV6iN6itwVKsNfrSLGrpmXSWz8n1lHuI4WNwqVf7JlnXtrpzYUgKgXNW84pDll79ke7CELv8nZKYG3PMMyc4iezYNDqvDrHZ6_iVk9TITk3sVGanRnaKZQ-bPClru42Lv8H_m74BRKZwUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>910943194</pqid></control><display><type>article</type><title>Cross hedging with stochastic correlation</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ankirchner, Stefan ; Heyne, Gregor</creator><creatorcontrib>Ankirchner, Stefan ; Heyne, Gregor</creatorcontrib><description>This paper is concerned with the study of quadratic hedging of contingent claims with basis risk. We extend existing results by allowing the correlation between the hedging instrument and the underlying of the contingent claim to be random itself. We assume that the correlation process ρ evolves according to a stochastic differential equation with values between the boundaries −1 and 1. We keep the correlation dynamics general and derive an integrability condition on the correlation process that allows to describe and compute the quadratic hedge by means of a simple hedging formula that can be directly implemented. Furthermore, we show that the conditions on ρ are fulfilled by a large class of dynamics. The theory is exemplified by various explicitly given correlation dynamics.</description><identifier>ISSN: 0949-2984</identifier><identifier>EISSN: 1432-1122</identifier><identifier>DOI: 10.1007/s00780-010-0148-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Correlation ; Differential analysis ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Expected values ; Finance ; Futures ; Hedging ; Insurance ; Management ; Market ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Money markets ; Prices ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Reductionism ; Risk ; Statistics for Business ; Stochastic models ; Stock exchanges ; Studies</subject><ispartof>Finance and stochastics, 2012, Vol.16 (1), p.17-43</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-25e63b7b7fc0ef42a0cf9c3edb93113a836be4351fb1acb154da1f5b689f29ec3</citedby><cites>FETCH-LOGICAL-c380t-25e63b7b7fc0ef42a0cf9c3edb93113a836be4351fb1acb154da1f5b689f29ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00780-010-0148-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00780-010-0148-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ankirchner, Stefan</creatorcontrib><creatorcontrib>Heyne, Gregor</creatorcontrib><title>Cross hedging with stochastic correlation</title><title>Finance and stochastics</title><addtitle>Finance Stoch</addtitle><description>This paper is concerned with the study of quadratic hedging of contingent claims with basis risk. We extend existing results by allowing the correlation between the hedging instrument and the underlying of the contingent claim to be random itself. We assume that the correlation process ρ evolves according to a stochastic differential equation with values between the boundaries −1 and 1. We keep the correlation dynamics general and derive an integrability condition on the correlation process that allows to describe and compute the quadratic hedge by means of a simple hedging formula that can be directly implemented. Furthermore, we show that the conditions on ρ are fulfilled by a large class of dynamics. The theory is exemplified by various explicitly given correlation dynamics.</description><subject>Correlation</subject><subject>Differential analysis</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Expected values</subject><subject>Finance</subject><subject>Futures</subject><subject>Hedging</subject><subject>Insurance</subject><subject>Management</subject><subject>Market</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Money markets</subject><subject>Prices</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Reductionism</subject><subject>Risk</subject><subject>Statistics for Business</subject><subject>Stochastic models</subject><subject>Stock exchanges</subject><subject>Studies</subject><issn>0949-2984</issn><issn>1432-1122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG_Fkx6iM0m6bY6y-A8WvOg5JNlkt0u3WZMW8dubUkEQPMzM5b3HvB8hlwi3CFDdpbxqoIDjiJqyIzJDwRlFZOyYzEAKSZmsxSk5S2kHAKyEckZuljGkVGzdetN0m-Kz6bdF6oPd6tQ3trAhRtfqvgndOTnxuk3u4ufOyfvjw9vyma5en16W9ytqeQ09ZaVbcFOZyltwXjAN1kvL3dpIjsh1zRfGCV6iN6itwVKsNfrSLGrpmXSWz8n1lHuI4WNwqVf7JlnXtrpzYUgKgXNW84pDll79ke7CELv8nZKYG3PMMyc4iezYNDqvDrHZ6_iVk9TITk3sVGanRnaKZQ-bPClru42Lv8H_m74BRKZwUw</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Ankirchner, Stefan</creator><creator>Heyne, Gregor</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2012</creationdate><title>Cross hedging with stochastic correlation</title><author>Ankirchner, Stefan ; Heyne, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-25e63b7b7fc0ef42a0cf9c3edb93113a836be4351fb1acb154da1f5b689f29ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Correlation</topic><topic>Differential analysis</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Expected values</topic><topic>Finance</topic><topic>Futures</topic><topic>Hedging</topic><topic>Insurance</topic><topic>Management</topic><topic>Market</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Money markets</topic><topic>Prices</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Reductionism</topic><topic>Risk</topic><topic>Statistics for Business</topic><topic>Stochastic models</topic><topic>Stock exchanges</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ankirchner, Stefan</creatorcontrib><creatorcontrib>Heyne, Gregor</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Finance and stochastics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ankirchner, Stefan</au><au>Heyne, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross hedging with stochastic correlation</atitle><jtitle>Finance and stochastics</jtitle><stitle>Finance Stoch</stitle><date>2012</date><risdate>2012</risdate><volume>16</volume><issue>1</issue><spage>17</spage><epage>43</epage><pages>17-43</pages><issn>0949-2984</issn><eissn>1432-1122</eissn><abstract>This paper is concerned with the study of quadratic hedging of contingent claims with basis risk. We extend existing results by allowing the correlation between the hedging instrument and the underlying of the contingent claim to be random itself. We assume that the correlation process ρ evolves according to a stochastic differential equation with values between the boundaries −1 and 1. We keep the correlation dynamics general and derive an integrability condition on the correlation process that allows to describe and compute the quadratic hedge by means of a simple hedging formula that can be directly implemented. Furthermore, we show that the conditions on ρ are fulfilled by a large class of dynamics. The theory is exemplified by various explicitly given correlation dynamics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00780-010-0148-2</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0949-2984
ispartof Finance and stochastics, 2012, Vol.16 (1), p.17-43
issn 0949-2984
1432-1122
language eng
recordid cdi_proquest_miscellaneous_1033283730
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Correlation
Differential analysis
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Expected values
Finance
Futures
Hedging
Insurance
Management
Market
Mathematical analysis
Mathematics
Mathematics and Statistics
Money markets
Prices
Probability Theory and Stochastic Processes
Quantitative Finance
Reductionism
Risk
Statistics for Business
Stochastic models
Stock exchanges
Studies
title Cross hedging with stochastic correlation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross%20hedging%20with%20stochastic%20correlation&rft.jtitle=Finance%20and%20stochastics&rft.au=Ankirchner,%20Stefan&rft.date=2012&rft.volume=16&rft.issue=1&rft.spage=17&rft.epage=43&rft.pages=17-43&rft.issn=0949-2984&rft.eissn=1432-1122&rft_id=info:doi/10.1007/s00780-010-0148-2&rft_dat=%3Cproquest_cross%3E1033283730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=910943194&rft_id=info:pmid/&rfr_iscdi=true