Variants of guided self-organization for robot control
Autonomous robots can generate exploratory behavior by self-organization of the sensorimotor loop. We show that the behavioral manifold that is covered in this way can be modified in a goal-dependent way without reducing the self-induced activity of the robot. We present three strategies for guided...
Gespeichert in:
Veröffentlicht in: | Theory in biosciences = Theorie in den Biowissenschaften 2012-09, Vol.131 (3), p.129-137 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | 3 |
container_start_page | 129 |
container_title | Theory in biosciences = Theorie in den Biowissenschaften |
container_volume | 131 |
creator | Martius, Georg Herrmann, J. Michael |
description | Autonomous robots can generate exploratory behavior by self-organization of the sensorimotor loop. We show that the behavioral manifold that is covered in this way can be modified in a goal-dependent way without reducing the self-induced activity of the robot. We present three strategies for guided self-organization, namely by using external rewards, a problem-specific error function, or assumptions about the symmetries of the desired behavior. The strategies are analyzed for two different robots in a physically realistic simulation. |
doi_str_mv | 10.1007/s12064-011-0141-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1033154688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387618111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c27875b100c8ebcdd09c33967d09b883a4fb2a66c9bd131627e3fc5cb34128413</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7_AC9S8OKlmpe0SXaU4S8YeFGvIUnT0dE1M2kP-tf7RqeC4CHJC_m-Tx4fQs6BXgOl8iYBo6LIKQCuArcDMgWBN1lyeoh1wbEWwCfkJKU1pQzkXByTCWMAQqpySsSbiY3p-pSFOlsNTeWrLPm2zkNcma75NH0TuqwOMYvBhj5zoetjaE_JUW3a5M_254y83t-9LB7z5fPD0-J2mTsuWZ87JpUsLQ7rlLeuqujccT4XEgurFDdFbZkRws1tBRwEk57XrnSWF8BUAXxGrkbuNob3wadeb5rkfNuazochaaCcQ1kIZM3I5Z_oOgyxw-k04wotKIAdEMaUiyGl6Gu9jc3GxA9E6Z1UPUrVKFXvpGqKPRd78mA3vvrp-LaIATYGEj51Kx9_v_6f-gVLFn-a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387618111</pqid></control><display><type>article</type><title>Variants of guided self-organization for robot control</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Martius, Georg ; Herrmann, J. Michael</creator><creatorcontrib>Martius, Georg ; Herrmann, J. Michael</creatorcontrib><description>Autonomous robots can generate exploratory behavior by self-organization of the sensorimotor loop. We show that the behavioral manifold that is covered in this way can be modified in a goal-dependent way without reducing the self-induced activity of the robot. We present three strategies for guided self-organization, namely by using external rewards, a problem-specific error function, or assumptions about the symmetries of the desired behavior. The strategies are analyzed for two different robots in a physically realistic simulation.</description><identifier>ISSN: 1431-7613</identifier><identifier>EISSN: 1611-7530</identifier><identifier>DOI: 10.1007/s12064-011-0141-0</identifier><identifier>PMID: 22116785</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Behavior ; Bioinformatics ; Biology ; Biomedical and Life Sciences ; Complex Systems ; Evolutionary Biology ; Exploratory behavior ; Learning ; Life Sciences ; Mathematical and Computational Biology ; Neural Networks (Computer) ; Original Paper ; Philosophy of Biology ; Robotics - methods ; Robotics - organization & administration ; Robots ; Sensorimotor system ; Teaching ; Theoretical Ecology/Statistics</subject><ispartof>Theory in biosciences = Theorie in den Biowissenschaften, 2012-09, Vol.131 (3), p.129-137</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-c27875b100c8ebcdd09c33967d09b883a4fb2a66c9bd131627e3fc5cb34128413</citedby><cites>FETCH-LOGICAL-c372t-c27875b100c8ebcdd09c33967d09b883a4fb2a66c9bd131627e3fc5cb34128413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12064-011-0141-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12064-011-0141-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22116785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martius, Georg</creatorcontrib><creatorcontrib>Herrmann, J. Michael</creatorcontrib><title>Variants of guided self-organization for robot control</title><title>Theory in biosciences = Theorie in den Biowissenschaften</title><addtitle>Theory Biosci</addtitle><addtitle>Theory Biosci</addtitle><description>Autonomous robots can generate exploratory behavior by self-organization of the sensorimotor loop. We show that the behavioral manifold that is covered in this way can be modified in a goal-dependent way without reducing the self-induced activity of the robot. We present three strategies for guided self-organization, namely by using external rewards, a problem-specific error function, or assumptions about the symmetries of the desired behavior. The strategies are analyzed for two different robots in a physically realistic simulation.</description><subject>Behavior</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Complex Systems</subject><subject>Evolutionary Biology</subject><subject>Exploratory behavior</subject><subject>Learning</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Neural Networks (Computer)</subject><subject>Original Paper</subject><subject>Philosophy of Biology</subject><subject>Robotics - methods</subject><subject>Robotics - organization & administration</subject><subject>Robots</subject><subject>Sensorimotor system</subject><subject>Teaching</subject><subject>Theoretical Ecology/Statistics</subject><issn>1431-7613</issn><issn>1611-7530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM9LwzAUx4Mobk7_AC9S8OKlmpe0SXaU4S8YeFGvIUnT0dE1M2kP-tf7RqeC4CHJC_m-Tx4fQs6BXgOl8iYBo6LIKQCuArcDMgWBN1lyeoh1wbEWwCfkJKU1pQzkXByTCWMAQqpySsSbiY3p-pSFOlsNTeWrLPm2zkNcma75NH0TuqwOMYvBhj5zoetjaE_JUW3a5M_254y83t-9LB7z5fPD0-J2mTsuWZ87JpUsLQ7rlLeuqujccT4XEgurFDdFbZkRws1tBRwEk57XrnSWF8BUAXxGrkbuNob3wadeb5rkfNuazochaaCcQ1kIZM3I5Z_oOgyxw-k04wotKIAdEMaUiyGl6Gu9jc3GxA9E6Z1UPUrVKFXvpGqKPRd78mA3vvrp-LaIATYGEj51Kx9_v_6f-gVLFn-a</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Martius, Georg</creator><creator>Herrmann, J. Michael</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20120901</creationdate><title>Variants of guided self-organization for robot control</title><author>Martius, Georg ; Herrmann, J. Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c27875b100c8ebcdd09c33967d09b883a4fb2a66c9bd131627e3fc5cb34128413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Behavior</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Complex Systems</topic><topic>Evolutionary Biology</topic><topic>Exploratory behavior</topic><topic>Learning</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Neural Networks (Computer)</topic><topic>Original Paper</topic><topic>Philosophy of Biology</topic><topic>Robotics - methods</topic><topic>Robotics - organization & administration</topic><topic>Robots</topic><topic>Sensorimotor system</topic><topic>Teaching</topic><topic>Theoretical Ecology/Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martius, Georg</creatorcontrib><creatorcontrib>Herrmann, J. Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Theory in biosciences = Theorie in den Biowissenschaften</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martius, Georg</au><au>Herrmann, J. Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variants of guided self-organization for robot control</atitle><jtitle>Theory in biosciences = Theorie in den Biowissenschaften</jtitle><stitle>Theory Biosci</stitle><addtitle>Theory Biosci</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>131</volume><issue>3</issue><spage>129</spage><epage>137</epage><pages>129-137</pages><issn>1431-7613</issn><eissn>1611-7530</eissn><abstract>Autonomous robots can generate exploratory behavior by self-organization of the sensorimotor loop. We show that the behavioral manifold that is covered in this way can be modified in a goal-dependent way without reducing the self-induced activity of the robot. We present three strategies for guided self-organization, namely by using external rewards, a problem-specific error function, or assumptions about the symmetries of the desired behavior. The strategies are analyzed for two different robots in a physically realistic simulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22116785</pmid><doi>10.1007/s12064-011-0141-0</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-7613 |
ispartof | Theory in biosciences = Theorie in den Biowissenschaften, 2012-09, Vol.131 (3), p.129-137 |
issn | 1431-7613 1611-7530 |
language | eng |
recordid | cdi_proquest_miscellaneous_1033154688 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Behavior Bioinformatics Biology Biomedical and Life Sciences Complex Systems Evolutionary Biology Exploratory behavior Learning Life Sciences Mathematical and Computational Biology Neural Networks (Computer) Original Paper Philosophy of Biology Robotics - methods Robotics - organization & administration Robots Sensorimotor system Teaching Theoretical Ecology/Statistics |
title | Variants of guided self-organization for robot control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variants%20of%20guided%20self-organization%20for%20robot%20control&rft.jtitle=Theory%20in%20biosciences%20=%20Theorie%20in%20den%20Biowissenschaften&rft.au=Martius,%20Georg&rft.date=2012-09-01&rft.volume=131&rft.issue=3&rft.spage=129&rft.epage=137&rft.pages=129-137&rft.issn=1431-7613&rft.eissn=1611-7530&rft_id=info:doi/10.1007/s12064-011-0141-0&rft_dat=%3Cproquest_cross%3E2387618111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387618111&rft_id=info:pmid/22116785&rfr_iscdi=true |