Variants of guided self-organization for robot control

Autonomous robots can generate exploratory behavior by self-organization of the sensorimotor loop. We show that the behavioral manifold that is covered in this way can be modified in a goal-dependent way without reducing the self-induced activity of the robot. We present three strategies for guided...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory in biosciences = Theorie in den Biowissenschaften 2012-09, Vol.131 (3), p.129-137
Hauptverfasser: Martius, Georg, Herrmann, J. Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue 3
container_start_page 129
container_title Theory in biosciences = Theorie in den Biowissenschaften
container_volume 131
creator Martius, Georg
Herrmann, J. Michael
description Autonomous robots can generate exploratory behavior by self-organization of the sensorimotor loop. We show that the behavioral manifold that is covered in this way can be modified in a goal-dependent way without reducing the self-induced activity of the robot. We present three strategies for guided self-organization, namely by using external rewards, a problem-specific error function, or assumptions about the symmetries of the desired behavior. The strategies are analyzed for two different robots in a physically realistic simulation.
doi_str_mv 10.1007/s12064-011-0141-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1033154688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387618111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c27875b100c8ebcdd09c33967d09b883a4fb2a66c9bd131627e3fc5cb34128413</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7_AC9S8OKlmpe0SXaU4S8YeFGvIUnT0dE1M2kP-tf7RqeC4CHJC_m-Tx4fQs6BXgOl8iYBo6LIKQCuArcDMgWBN1lyeoh1wbEWwCfkJKU1pQzkXByTCWMAQqpySsSbiY3p-pSFOlsNTeWrLPm2zkNcma75NH0TuqwOMYvBhj5zoetjaE_JUW3a5M_254y83t-9LB7z5fPD0-J2mTsuWZ87JpUsLQ7rlLeuqujccT4XEgurFDdFbZkRws1tBRwEk57XrnSWF8BUAXxGrkbuNob3wadeb5rkfNuazochaaCcQ1kIZM3I5Z_oOgyxw-k04wotKIAdEMaUiyGl6Gu9jc3GxA9E6Z1UPUrVKFXvpGqKPRd78mA3vvrp-LaIATYGEj51Kx9_v_6f-gVLFn-a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387618111</pqid></control><display><type>article</type><title>Variants of guided self-organization for robot control</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Martius, Georg ; Herrmann, J. Michael</creator><creatorcontrib>Martius, Georg ; Herrmann, J. Michael</creatorcontrib><description>Autonomous robots can generate exploratory behavior by self-organization of the sensorimotor loop. We show that the behavioral manifold that is covered in this way can be modified in a goal-dependent way without reducing the self-induced activity of the robot. We present three strategies for guided self-organization, namely by using external rewards, a problem-specific error function, or assumptions about the symmetries of the desired behavior. The strategies are analyzed for two different robots in a physically realistic simulation.</description><identifier>ISSN: 1431-7613</identifier><identifier>EISSN: 1611-7530</identifier><identifier>DOI: 10.1007/s12064-011-0141-0</identifier><identifier>PMID: 22116785</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Behavior ; Bioinformatics ; Biology ; Biomedical and Life Sciences ; Complex Systems ; Evolutionary Biology ; Exploratory behavior ; Learning ; Life Sciences ; Mathematical and Computational Biology ; Neural Networks (Computer) ; Original Paper ; Philosophy of Biology ; Robotics - methods ; Robotics - organization &amp; administration ; Robots ; Sensorimotor system ; Teaching ; Theoretical Ecology/Statistics</subject><ispartof>Theory in biosciences = Theorie in den Biowissenschaften, 2012-09, Vol.131 (3), p.129-137</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-c27875b100c8ebcdd09c33967d09b883a4fb2a66c9bd131627e3fc5cb34128413</citedby><cites>FETCH-LOGICAL-c372t-c27875b100c8ebcdd09c33967d09b883a4fb2a66c9bd131627e3fc5cb34128413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12064-011-0141-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12064-011-0141-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22116785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martius, Georg</creatorcontrib><creatorcontrib>Herrmann, J. Michael</creatorcontrib><title>Variants of guided self-organization for robot control</title><title>Theory in biosciences = Theorie in den Biowissenschaften</title><addtitle>Theory Biosci</addtitle><addtitle>Theory Biosci</addtitle><description>Autonomous robots can generate exploratory behavior by self-organization of the sensorimotor loop. We show that the behavioral manifold that is covered in this way can be modified in a goal-dependent way without reducing the self-induced activity of the robot. We present three strategies for guided self-organization, namely by using external rewards, a problem-specific error function, or assumptions about the symmetries of the desired behavior. The strategies are analyzed for two different robots in a physically realistic simulation.</description><subject>Behavior</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Complex Systems</subject><subject>Evolutionary Biology</subject><subject>Exploratory behavior</subject><subject>Learning</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Neural Networks (Computer)</subject><subject>Original Paper</subject><subject>Philosophy of Biology</subject><subject>Robotics - methods</subject><subject>Robotics - organization &amp; administration</subject><subject>Robots</subject><subject>Sensorimotor system</subject><subject>Teaching</subject><subject>Theoretical Ecology/Statistics</subject><issn>1431-7613</issn><issn>1611-7530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM9LwzAUx4Mobk7_AC9S8OKlmpe0SXaU4S8YeFGvIUnT0dE1M2kP-tf7RqeC4CHJC_m-Tx4fQs6BXgOl8iYBo6LIKQCuArcDMgWBN1lyeoh1wbEWwCfkJKU1pQzkXByTCWMAQqpySsSbiY3p-pSFOlsNTeWrLPm2zkNcma75NH0TuqwOMYvBhj5zoetjaE_JUW3a5M_254y83t-9LB7z5fPD0-J2mTsuWZ87JpUsLQ7rlLeuqujccT4XEgurFDdFbZkRws1tBRwEk57XrnSWF8BUAXxGrkbuNob3wadeb5rkfNuazochaaCcQ1kIZM3I5Z_oOgyxw-k04wotKIAdEMaUiyGl6Gu9jc3GxA9E6Z1UPUrVKFXvpGqKPRd78mA3vvrp-LaIATYGEj51Kx9_v_6f-gVLFn-a</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Martius, Georg</creator><creator>Herrmann, J. Michael</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20120901</creationdate><title>Variants of guided self-organization for robot control</title><author>Martius, Georg ; Herrmann, J. Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c27875b100c8ebcdd09c33967d09b883a4fb2a66c9bd131627e3fc5cb34128413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Behavior</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Complex Systems</topic><topic>Evolutionary Biology</topic><topic>Exploratory behavior</topic><topic>Learning</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Neural Networks (Computer)</topic><topic>Original Paper</topic><topic>Philosophy of Biology</topic><topic>Robotics - methods</topic><topic>Robotics - organization &amp; administration</topic><topic>Robots</topic><topic>Sensorimotor system</topic><topic>Teaching</topic><topic>Theoretical Ecology/Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martius, Georg</creatorcontrib><creatorcontrib>Herrmann, J. Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Theory in biosciences = Theorie in den Biowissenschaften</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martius, Georg</au><au>Herrmann, J. Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variants of guided self-organization for robot control</atitle><jtitle>Theory in biosciences = Theorie in den Biowissenschaften</jtitle><stitle>Theory Biosci</stitle><addtitle>Theory Biosci</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>131</volume><issue>3</issue><spage>129</spage><epage>137</epage><pages>129-137</pages><issn>1431-7613</issn><eissn>1611-7530</eissn><abstract>Autonomous robots can generate exploratory behavior by self-organization of the sensorimotor loop. We show that the behavioral manifold that is covered in this way can be modified in a goal-dependent way without reducing the self-induced activity of the robot. We present three strategies for guided self-organization, namely by using external rewards, a problem-specific error function, or assumptions about the symmetries of the desired behavior. The strategies are analyzed for two different robots in a physically realistic simulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22116785</pmid><doi>10.1007/s12064-011-0141-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1431-7613
ispartof Theory in biosciences = Theorie in den Biowissenschaften, 2012-09, Vol.131 (3), p.129-137
issn 1431-7613
1611-7530
language eng
recordid cdi_proquest_miscellaneous_1033154688
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Behavior
Bioinformatics
Biology
Biomedical and Life Sciences
Complex Systems
Evolutionary Biology
Exploratory behavior
Learning
Life Sciences
Mathematical and Computational Biology
Neural Networks (Computer)
Original Paper
Philosophy of Biology
Robotics - methods
Robotics - organization & administration
Robots
Sensorimotor system
Teaching
Theoretical Ecology/Statistics
title Variants of guided self-organization for robot control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variants%20of%20guided%20self-organization%20for%20robot%20control&rft.jtitle=Theory%20in%20biosciences%20=%20Theorie%20in%20den%20Biowissenschaften&rft.au=Martius,%20Georg&rft.date=2012-09-01&rft.volume=131&rft.issue=3&rft.spage=129&rft.epage=137&rft.pages=129-137&rft.issn=1431-7613&rft.eissn=1611-7530&rft_id=info:doi/10.1007/s12064-011-0141-0&rft_dat=%3Cproquest_cross%3E2387618111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387618111&rft_id=info:pmid/22116785&rfr_iscdi=true