Thermodynamics of microstructure evolution: Grain growth

It is gradually getting clear that the macroscopic description of microstructure evolution requires additional thermodynamic parameters, entropy of microstructure and temperature of microstructure. It was claimed that there is “one more law of thermodynamics”: entropy of microstructure must decay in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2012-08, Vol.57, p.50-78
1. Verfasser: Berdichevsky, Victor L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue
container_start_page 50
container_title International journal of engineering science
container_volume 57
creator Berdichevsky, Victor L.
description It is gradually getting clear that the macroscopic description of microstructure evolution requires additional thermodynamic parameters, entropy of microstructure and temperature of microstructure. It was claimed that there is “one more law of thermodynamics”: entropy of microstructure must decay in isolated thermodynamically stable systems. Such behavior is opposite to that of thermodynamic entropy. This paper aims to illustrate the concept of microstructure entropy by one example, the grain growth in polycrystals. The grain growth is treated within the framework of a theory which is a modification of Hillert theory. The modification is made in order to reach simultaneously two goals: to get a coincidence of theoretical predictions with experimentally observed results and to obtain the equations that admit analytical solutions. Due to these features, the modified theory is of independent interest. In the modified Hillert theory one observes the decay of total microstructure entropy when the system approaches the self-similar regime. The microstructure entropy per one grain grows indicating a chaotization of grain sizes. It is shown also that there exits an equation of state of grain boundary microstructure that links entropy of microstructure, energy of microstructure, average grain size and a characteristic of the inhomogeneity of the large grain distribution.
doi_str_mv 10.1016/j.ijengsci.2012.03.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031341800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722512000894</els_id><sourcerecordid>1031341800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-cb5d6ebb9d6a1709d84655c2e6140bfd0d8de394b5546d70ee5790d5e55244023</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKd_QfroS-dNmrSNT8rQKQx8mc-hTW63lLaZSTvx35sxfRYOnJfvHO49hNxSWFCg-X27sC0O26DtggFlC8iiyjMyo2UhU0ZlcU5mAAzSgjFxSa5CaAFAZFLOSLnZoe-d-R6q3uqQuCaJ7l0Y_aTHyWOCB9dNo3XDQ7LylR2SrXdf4-6aXDRVF_Dm1-fk4-V5s3xN1--rt-XTOtWc0jHVtTA51rU0eUULkKbkuRCaYU451I0BUxrMJK-F4LkpAFEUEoxAIRjnwLI5uTv17r37nDCMqrdBY9dVA7opKAoZzTgtASKan9Dj_cFjo_be9pX_jpA6TqVa9TeVOk6lIIsqY_DxFMT4yMGiV5HAQaOxHvWojLP_VfwAvCd1uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031341800</pqid></control><display><type>article</type><title>Thermodynamics of microstructure evolution: Grain growth</title><source>Elsevier ScienceDirect Journals</source><creator>Berdichevsky, Victor L.</creator><creatorcontrib>Berdichevsky, Victor L.</creatorcontrib><description>It is gradually getting clear that the macroscopic description of microstructure evolution requires additional thermodynamic parameters, entropy of microstructure and temperature of microstructure. It was claimed that there is “one more law of thermodynamics”: entropy of microstructure must decay in isolated thermodynamically stable systems. Such behavior is opposite to that of thermodynamic entropy. This paper aims to illustrate the concept of microstructure entropy by one example, the grain growth in polycrystals. The grain growth is treated within the framework of a theory which is a modification of Hillert theory. The modification is made in order to reach simultaneously two goals: to get a coincidence of theoretical predictions with experimentally observed results and to obtain the equations that admit analytical solutions. Due to these features, the modified theory is of independent interest. In the modified Hillert theory one observes the decay of total microstructure entropy when the system approaches the self-similar regime. The microstructure entropy per one grain grows indicating a chaotization of grain sizes. It is shown also that there exits an equation of state of grain boundary microstructure that links entropy of microstructure, energy of microstructure, average grain size and a characteristic of the inhomogeneity of the large grain distribution.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2012.03.038</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Configurational entropy ; Decay ; Effective temperature ; Entropy ; Evolution ; Grain growth ; Mathematical analysis ; Microstructure ; Microstructure entropy ; Self-similarity ; Thermodynamics</subject><ispartof>International journal of engineering science, 2012-08, Vol.57, p.50-78</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-cb5d6ebb9d6a1709d84655c2e6140bfd0d8de394b5546d70ee5790d5e55244023</citedby><cites>FETCH-LOGICAL-c411t-cb5d6ebb9d6a1709d84655c2e6140bfd0d8de394b5546d70ee5790d5e55244023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijengsci.2012.03.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Berdichevsky, Victor L.</creatorcontrib><title>Thermodynamics of microstructure evolution: Grain growth</title><title>International journal of engineering science</title><description>It is gradually getting clear that the macroscopic description of microstructure evolution requires additional thermodynamic parameters, entropy of microstructure and temperature of microstructure. It was claimed that there is “one more law of thermodynamics”: entropy of microstructure must decay in isolated thermodynamically stable systems. Such behavior is opposite to that of thermodynamic entropy. This paper aims to illustrate the concept of microstructure entropy by one example, the grain growth in polycrystals. The grain growth is treated within the framework of a theory which is a modification of Hillert theory. The modification is made in order to reach simultaneously two goals: to get a coincidence of theoretical predictions with experimentally observed results and to obtain the equations that admit analytical solutions. Due to these features, the modified theory is of independent interest. In the modified Hillert theory one observes the decay of total microstructure entropy when the system approaches the self-similar regime. The microstructure entropy per one grain grows indicating a chaotization of grain sizes. It is shown also that there exits an equation of state of grain boundary microstructure that links entropy of microstructure, energy of microstructure, average grain size and a characteristic of the inhomogeneity of the large grain distribution.</description><subject>Configurational entropy</subject><subject>Decay</subject><subject>Effective temperature</subject><subject>Entropy</subject><subject>Evolution</subject><subject>Grain growth</subject><subject>Mathematical analysis</subject><subject>Microstructure</subject><subject>Microstructure entropy</subject><subject>Self-similarity</subject><subject>Thermodynamics</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKd_QfroS-dNmrSNT8rQKQx8mc-hTW63lLaZSTvx35sxfRYOnJfvHO49hNxSWFCg-X27sC0O26DtggFlC8iiyjMyo2UhU0ZlcU5mAAzSgjFxSa5CaAFAZFLOSLnZoe-d-R6q3uqQuCaJ7l0Y_aTHyWOCB9dNo3XDQ7LylR2SrXdf4-6aXDRVF_Dm1-fk4-V5s3xN1--rt-XTOtWc0jHVtTA51rU0eUULkKbkuRCaYU451I0BUxrMJK-F4LkpAFEUEoxAIRjnwLI5uTv17r37nDCMqrdBY9dVA7opKAoZzTgtASKan9Dj_cFjo_be9pX_jpA6TqVa9TeVOk6lIIsqY_DxFMT4yMGiV5HAQaOxHvWojLP_VfwAvCd1uw</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Berdichevsky, Victor L.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201208</creationdate><title>Thermodynamics of microstructure evolution: Grain growth</title><author>Berdichevsky, Victor L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-cb5d6ebb9d6a1709d84655c2e6140bfd0d8de394b5546d70ee5790d5e55244023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Configurational entropy</topic><topic>Decay</topic><topic>Effective temperature</topic><topic>Entropy</topic><topic>Evolution</topic><topic>Grain growth</topic><topic>Mathematical analysis</topic><topic>Microstructure</topic><topic>Microstructure entropy</topic><topic>Self-similarity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berdichevsky, Victor L.</creatorcontrib><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berdichevsky, Victor L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of microstructure evolution: Grain growth</atitle><jtitle>International journal of engineering science</jtitle><date>2012-08</date><risdate>2012</risdate><volume>57</volume><spage>50</spage><epage>78</epage><pages>50-78</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><abstract>It is gradually getting clear that the macroscopic description of microstructure evolution requires additional thermodynamic parameters, entropy of microstructure and temperature of microstructure. It was claimed that there is “one more law of thermodynamics”: entropy of microstructure must decay in isolated thermodynamically stable systems. Such behavior is opposite to that of thermodynamic entropy. This paper aims to illustrate the concept of microstructure entropy by one example, the grain growth in polycrystals. The grain growth is treated within the framework of a theory which is a modification of Hillert theory. The modification is made in order to reach simultaneously two goals: to get a coincidence of theoretical predictions with experimentally observed results and to obtain the equations that admit analytical solutions. Due to these features, the modified theory is of independent interest. In the modified Hillert theory one observes the decay of total microstructure entropy when the system approaches the self-similar regime. The microstructure entropy per one grain grows indicating a chaotization of grain sizes. It is shown also that there exits an equation of state of grain boundary microstructure that links entropy of microstructure, energy of microstructure, average grain size and a characteristic of the inhomogeneity of the large grain distribution.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2012.03.038</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7225
ispartof International journal of engineering science, 2012-08, Vol.57, p.50-78
issn 0020-7225
1879-2197
language eng
recordid cdi_proquest_miscellaneous_1031341800
source Elsevier ScienceDirect Journals
subjects Configurational entropy
Decay
Effective temperature
Entropy
Evolution
Grain growth
Mathematical analysis
Microstructure
Microstructure entropy
Self-similarity
Thermodynamics
title Thermodynamics of microstructure evolution: Grain growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20microstructure%20evolution:%20Grain%20growth&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Berdichevsky,%20Victor%20L.&rft.date=2012-08&rft.volume=57&rft.spage=50&rft.epage=78&rft.pages=50-78&rft.issn=0020-7225&rft.eissn=1879-2197&rft_id=info:doi/10.1016/j.ijengsci.2012.03.038&rft_dat=%3Cproquest_cross%3E1031341800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031341800&rft_id=info:pmid/&rft_els_id=S0020722512000894&rfr_iscdi=true