Electrical resistivity of Ti–Zn mixed oxide thin films deposited by atomic layer deposition

Ti–Zn mixed oxide thin films, with thickness less than 50nm, were grown with atomic layer deposition (ALD) technique at low temperature (90°C) varying the composition. ALD is a powerful chemical technique to deposit thin films with thickness of few atomic layers. ALD oxide material growth is achieve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2012-06, Vol.520 (16), p.5151-5154
Hauptverfasser: Hazra, S.K., Borgese, L., Federici, S., Bontempi, E., Ferrari, M., Ferrari, V., Plaisier, J.R., Santarelli, X., Zerauschek, G., Lausi, A., Depero, L.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5154
container_issue 16
container_start_page 5151
container_title Thin solid films
container_volume 520
creator Hazra, S.K.
Borgese, L.
Federici, S.
Bontempi, E.
Ferrari, M.
Ferrari, V.
Plaisier, J.R.
Santarelli, X.
Zerauschek, G.
Lausi, A.
Depero, L.E.
description Ti–Zn mixed oxide thin films, with thickness less than 50nm, were grown with atomic layer deposition (ALD) technique at low temperature (90°C) varying the composition. ALD is a powerful chemical technique to deposit thin films with thickness of few atomic layers. ALD oxide material growth is achieved by dosing sequentially the metal precursor and the oxidizing agent. Thanks to ALD nature of layer by layer growth it was possible to realize mixed metal, Ti and Zn, oxide thin films with controlled composition, simply by changing the number of cycles of each metal oxide layer. Structural and electrical properties of the prepared thin films were studied as a function of their composition. Synchrotron radiation X-ray diffraction technique was used to follow thin film crystallization during sample annealing, performed in situ. It was observed that the onset temperature of crystallization raises with Ti content, and sample structure was Zn2TiO4 phase. Electrical resistivity measurements were performed on crystalline samples, annealed at 600°C, revealing an increase in resistivity with Ti content. ► Ti–Zn mixed oxide thin films are synthesized by atomic layer deposition (ALD). ► ALD is performed at low temperature (90°C). ► Thin film composition is controlled by the amount of each metal oxide cycles. ► Sample crystallization is studied during annealing by in situ X-ray diffraction. ► Electrical resistivity of crystalline samples increase with Ti content.
doi_str_mv 10.1016/j.tsf.2012.03.131
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031341592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609012004282</els_id><sourcerecordid>1031341592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-826efc450e136dba406ce6b3d6389e7702fe99a9249fb3dd210ab7a9e71ce1b63</originalsourceid><addsrcrecordid>eNp9kM-KFDEQh4MoOK4-gLdcBC_dViW96Wk8ybL-gQUv60WQkE5XsIbuzphkl52b7-Ab-iRmmF2Peyqo31dV1CfEa4QWAc27XVtyaBWgakG3qPGJ2OC2HxrVa3wqNgAdNAYGeC5e5LwDqKTSG_HjciZfEns3y0SZc-FbLgcZg7zmv7__fF_lwnc0yXjHE8nyk1cZeF6ynGgfM5cajQfpSlzYy9kdKD0kHNeX4llwc6ZX9_VMfPt4eX3xubn6-unLxYerxmsDpdkqQ8F350CozTS6DownM-rJ6O1AfQ8q0DC4QXVDqN1JIbixdzVCTzgafSbenvbuU_x1Q7nYhbOneXYrxZtsETTqDs8HVVE8oT7FnBMFu0-8uHSokD2qtDtbVdqjSgvaVpV15s39eperqJDc6jn_H1QGEAc8cu9PHNVfb5mSzZ5p9TRxqpbtFPmRK_8AcCeLBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031341592</pqid></control><display><type>article</type><title>Electrical resistivity of Ti–Zn mixed oxide thin films deposited by atomic layer deposition</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hazra, S.K. ; Borgese, L. ; Federici, S. ; Bontempi, E. ; Ferrari, M. ; Ferrari, V. ; Plaisier, J.R. ; Santarelli, X. ; Zerauschek, G. ; Lausi, A. ; Depero, L.E.</creator><creatorcontrib>Hazra, S.K. ; Borgese, L. ; Federici, S. ; Bontempi, E. ; Ferrari, M. ; Ferrari, V. ; Plaisier, J.R. ; Santarelli, X. ; Zerauschek, G. ; Lausi, A. ; Depero, L.E.</creatorcontrib><description>Ti–Zn mixed oxide thin films, with thickness less than 50nm, were grown with atomic layer deposition (ALD) technique at low temperature (90°C) varying the composition. ALD is a powerful chemical technique to deposit thin films with thickness of few atomic layers. ALD oxide material growth is achieved by dosing sequentially the metal precursor and the oxidizing agent. Thanks to ALD nature of layer by layer growth it was possible to realize mixed metal, Ti and Zn, oxide thin films with controlled composition, simply by changing the number of cycles of each metal oxide layer. Structural and electrical properties of the prepared thin films were studied as a function of their composition. Synchrotron radiation X-ray diffraction technique was used to follow thin film crystallization during sample annealing, performed in situ. It was observed that the onset temperature of crystallization raises with Ti content, and sample structure was Zn2TiO4 phase. Electrical resistivity measurements were performed on crystalline samples, annealed at 600°C, revealing an increase in resistivity with Ti content. ► Ti–Zn mixed oxide thin films are synthesized by atomic layer deposition (ALD). ► ALD is performed at low temperature (90°C). ► Thin film composition is controlled by the amount of each metal oxide cycles. ► Sample crystallization is studied during annealing by in situ X-ray diffraction. ► Electrical resistivity of crystalline samples increase with Ti content.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2012.03.131</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Annealing ; Atomic layer deposition ; Composition and phase identification ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Deposition ; Electrical resistivity ; Exact sciences and technology ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Mixed oxides ; Oxides ; Physics ; Resistivity ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Theory and models of film growth ; Thin film structure and morphology ; Thin films ; Titanates ; Titanium ; Vapor phase epitaxy; growth from vapor phase ; X-ray diffraction</subject><ispartof>Thin solid films, 2012-06, Vol.520 (16), p.5151-5154</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-826efc450e136dba406ce6b3d6389e7702fe99a9249fb3dd210ab7a9e71ce1b63</citedby><cites>FETCH-LOGICAL-c360t-826efc450e136dba406ce6b3d6389e7702fe99a9249fb3dd210ab7a9e71ce1b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2012.03.131$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26011911$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hazra, S.K.</creatorcontrib><creatorcontrib>Borgese, L.</creatorcontrib><creatorcontrib>Federici, S.</creatorcontrib><creatorcontrib>Bontempi, E.</creatorcontrib><creatorcontrib>Ferrari, M.</creatorcontrib><creatorcontrib>Ferrari, V.</creatorcontrib><creatorcontrib>Plaisier, J.R.</creatorcontrib><creatorcontrib>Santarelli, X.</creatorcontrib><creatorcontrib>Zerauschek, G.</creatorcontrib><creatorcontrib>Lausi, A.</creatorcontrib><creatorcontrib>Depero, L.E.</creatorcontrib><title>Electrical resistivity of Ti–Zn mixed oxide thin films deposited by atomic layer deposition</title><title>Thin solid films</title><description>Ti–Zn mixed oxide thin films, with thickness less than 50nm, were grown with atomic layer deposition (ALD) technique at low temperature (90°C) varying the composition. ALD is a powerful chemical technique to deposit thin films with thickness of few atomic layers. ALD oxide material growth is achieved by dosing sequentially the metal precursor and the oxidizing agent. Thanks to ALD nature of layer by layer growth it was possible to realize mixed metal, Ti and Zn, oxide thin films with controlled composition, simply by changing the number of cycles of each metal oxide layer. Structural and electrical properties of the prepared thin films were studied as a function of their composition. Synchrotron radiation X-ray diffraction technique was used to follow thin film crystallization during sample annealing, performed in situ. It was observed that the onset temperature of crystallization raises with Ti content, and sample structure was Zn2TiO4 phase. Electrical resistivity measurements were performed on crystalline samples, annealed at 600°C, revealing an increase in resistivity with Ti content. ► Ti–Zn mixed oxide thin films are synthesized by atomic layer deposition (ALD). ► ALD is performed at low temperature (90°C). ► Thin film composition is controlled by the amount of each metal oxide cycles. ► Sample crystallization is studied during annealing by in situ X-ray diffraction. ► Electrical resistivity of crystalline samples increase with Ti content.</description><subject>Annealing</subject><subject>Atomic layer deposition</subject><subject>Composition and phase identification</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Deposition</subject><subject>Electrical resistivity</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Mixed oxides</subject><subject>Oxides</subject><subject>Physics</subject><subject>Resistivity</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Theory and models of film growth</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><subject>Titanates</subject><subject>Titanium</subject><subject>Vapor phase epitaxy; growth from vapor phase</subject><subject>X-ray diffraction</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM-KFDEQh4MoOK4-gLdcBC_dViW96Wk8ybL-gQUv60WQkE5XsIbuzphkl52b7-Ab-iRmmF2Peyqo31dV1CfEa4QWAc27XVtyaBWgakG3qPGJ2OC2HxrVa3wqNgAdNAYGeC5e5LwDqKTSG_HjciZfEns3y0SZc-FbLgcZg7zmv7__fF_lwnc0yXjHE8nyk1cZeF6ynGgfM5cajQfpSlzYy9kdKD0kHNeX4llwc6ZX9_VMfPt4eX3xubn6-unLxYerxmsDpdkqQ8F350CozTS6DownM-rJ6O1AfQ8q0DC4QXVDqN1JIbixdzVCTzgafSbenvbuU_x1Q7nYhbOneXYrxZtsETTqDs8HVVE8oT7FnBMFu0-8uHSokD2qtDtbVdqjSgvaVpV15s39eperqJDc6jn_H1QGEAc8cu9PHNVfb5mSzZ5p9TRxqpbtFPmRK_8AcCeLBg</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Hazra, S.K.</creator><creator>Borgese, L.</creator><creator>Federici, S.</creator><creator>Bontempi, E.</creator><creator>Ferrari, M.</creator><creator>Ferrari, V.</creator><creator>Plaisier, J.R.</creator><creator>Santarelli, X.</creator><creator>Zerauschek, G.</creator><creator>Lausi, A.</creator><creator>Depero, L.E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120601</creationdate><title>Electrical resistivity of Ti–Zn mixed oxide thin films deposited by atomic layer deposition</title><author>Hazra, S.K. ; Borgese, L. ; Federici, S. ; Bontempi, E. ; Ferrari, M. ; Ferrari, V. ; Plaisier, J.R. ; Santarelli, X. ; Zerauschek, G. ; Lausi, A. ; Depero, L.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-826efc450e136dba406ce6b3d6389e7702fe99a9249fb3dd210ab7a9e71ce1b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Annealing</topic><topic>Atomic layer deposition</topic><topic>Composition and phase identification</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Deposition</topic><topic>Electrical resistivity</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Mixed oxides</topic><topic>Oxides</topic><topic>Physics</topic><topic>Resistivity</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Theory and models of film growth</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><topic>Titanates</topic><topic>Titanium</topic><topic>Vapor phase epitaxy; growth from vapor phase</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hazra, S.K.</creatorcontrib><creatorcontrib>Borgese, L.</creatorcontrib><creatorcontrib>Federici, S.</creatorcontrib><creatorcontrib>Bontempi, E.</creatorcontrib><creatorcontrib>Ferrari, M.</creatorcontrib><creatorcontrib>Ferrari, V.</creatorcontrib><creatorcontrib>Plaisier, J.R.</creatorcontrib><creatorcontrib>Santarelli, X.</creatorcontrib><creatorcontrib>Zerauschek, G.</creatorcontrib><creatorcontrib>Lausi, A.</creatorcontrib><creatorcontrib>Depero, L.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazra, S.K.</au><au>Borgese, L.</au><au>Federici, S.</au><au>Bontempi, E.</au><au>Ferrari, M.</au><au>Ferrari, V.</au><au>Plaisier, J.R.</au><au>Santarelli, X.</au><au>Zerauschek, G.</au><au>Lausi, A.</au><au>Depero, L.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical resistivity of Ti–Zn mixed oxide thin films deposited by atomic layer deposition</atitle><jtitle>Thin solid films</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>520</volume><issue>16</issue><spage>5151</spage><epage>5154</epage><pages>5151-5154</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>Ti–Zn mixed oxide thin films, with thickness less than 50nm, were grown with atomic layer deposition (ALD) technique at low temperature (90°C) varying the composition. ALD is a powerful chemical technique to deposit thin films with thickness of few atomic layers. ALD oxide material growth is achieved by dosing sequentially the metal precursor and the oxidizing agent. Thanks to ALD nature of layer by layer growth it was possible to realize mixed metal, Ti and Zn, oxide thin films with controlled composition, simply by changing the number of cycles of each metal oxide layer. Structural and electrical properties of the prepared thin films were studied as a function of their composition. Synchrotron radiation X-ray diffraction technique was used to follow thin film crystallization during sample annealing, performed in situ. It was observed that the onset temperature of crystallization raises with Ti content, and sample structure was Zn2TiO4 phase. Electrical resistivity measurements were performed on crystalline samples, annealed at 600°C, revealing an increase in resistivity with Ti content. ► Ti–Zn mixed oxide thin films are synthesized by atomic layer deposition (ALD). ► ALD is performed at low temperature (90°C). ► Thin film composition is controlled by the amount of each metal oxide cycles. ► Sample crystallization is studied during annealing by in situ X-ray diffraction. ► Electrical resistivity of crystalline samples increase with Ti content.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2012.03.131</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2012-06, Vol.520 (16), p.5151-5154
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1031341592
source Access via ScienceDirect (Elsevier)
subjects Annealing
Atomic layer deposition
Composition and phase identification
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystallization
Deposition
Electrical resistivity
Exact sciences and technology
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Mixed oxides
Oxides
Physics
Resistivity
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Theory and models of film growth
Thin film structure and morphology
Thin films
Titanates
Titanium
Vapor phase epitaxy
growth from vapor phase
X-ray diffraction
title Electrical resistivity of Ti–Zn mixed oxide thin films deposited by atomic layer deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20resistivity%20of%20Ti%E2%80%93Zn%20mixed%20oxide%20thin%20films%20deposited%20by%20atomic%20layer%20deposition&rft.jtitle=Thin%20solid%20films&rft.au=Hazra,%20S.K.&rft.date=2012-06-01&rft.volume=520&rft.issue=16&rft.spage=5151&rft.epage=5154&rft.pages=5151-5154&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2012.03.131&rft_dat=%3Cproquest_cross%3E1031341592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031341592&rft_id=info:pmid/&rft_els_id=S0040609012004282&rfr_iscdi=true