Wrinkles and deep folds as photonic structures in photovoltaics
Some of the simplest light-harvesting systems in nature rely on the presence of surface structures to increase internal light scattering. We have extended this concept to increase the efficiencies of man-made solar energy harvesting systems. Specifically, we exploit the wrinkles and deep folds that...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2012-05, Vol.6 (5), p.327-332 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | 5 |
container_start_page | 327 |
container_title | Nature photonics |
container_volume | 6 |
creator | Kim, Jong Bok Kim, Pilnam Pégard, Nicolas C. Oh, Soong Ju Kagan, Cherie R. Fleischer, Jason W. Stone, Howard A. Loo, Yueh-Lin |
description | Some of the simplest light-harvesting systems in nature rely on the presence of surface structures to increase internal light scattering. We have extended this concept to increase the efficiencies of man-made solar energy harvesting systems. Specifically, we exploit the wrinkles and deep folds that form on polymer surfaces when subjected to mechanical stress to guide and retain light within the photo-active regions of photovoltaics. Devices constructed on such surfaces show substantial improvements in light harvesting efficiencies, particularly in the near-infrared region where light absorption is otherwise minimal. We report a vast increase in the external quantum efficiency of polymer photovoltaics by more than 600% in the near-infrared, where the useful range of solar energy conversion is extended by more than 200 nm. This method of exploiting elastic instabilities of thin, layered materials is straightforward and represents an economical route to patterning photonic structures over large areas to improve the performance of optoelectronics.
Researchers demonstrate that wrinkles and folds on polymer surfaces can improve the light-harvesting capabilities of solar cells, increasing external quantum efficiencies by up to 600% in the near-infrared. This fabrication method, which employs elastic instabilities of thin, layered materials, may be economical for patterning photonic structures over large areas. |
doi_str_mv | 10.1038/nphoton.2012.70 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031329580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031329580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-2e1bdc91f448b7c355688be20d5aa7a6282a2240617316694c093e3fc909c0bd3</originalsourceid><addsrcrecordid>eNptkMtLxDAQh4MouK6evRa8eOnu5NE2OYksvmDBi-KxpGmqXbtJzbSC_71ZuoiIp3nwzcfwI-ScwoICl0vXv_nBuwUDyhYFHJAZLYRKhVT88KeX2TE5QdwAZFwxNiNXL6F1753FRLs6qa3tk8Z3dRwxmYStSXAIoxnGEKnWTetP3w26NXhKjhrdoT3b1zl5vr15Wt2n68e7h9X1OjVciiFllla1UbQRQlaF4VmWS1lZBnWmdaFzJplmTEBOC07zXAkDilveGAXKQFXzObmcvH3wH6PFody2aGzXaWf9iGWMgHKmMgkRvfiDbvwYXPwuUlQxYBGK1HKiTPCIwTZlH9qtDl8R2tlkuQ-03AVaFjsvTBcYSfdqw2_v_yff99V6Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019202803</pqid></control><display><type>article</type><title>Wrinkles and deep folds as photonic structures in photovoltaics</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Kim, Jong Bok ; Kim, Pilnam ; Pégard, Nicolas C. ; Oh, Soong Ju ; Kagan, Cherie R. ; Fleischer, Jason W. ; Stone, Howard A. ; Loo, Yueh-Lin</creator><creatorcontrib>Kim, Jong Bok ; Kim, Pilnam ; Pégard, Nicolas C. ; Oh, Soong Ju ; Kagan, Cherie R. ; Fleischer, Jason W. ; Stone, Howard A. ; Loo, Yueh-Lin</creatorcontrib><description>Some of the simplest light-harvesting systems in nature rely on the presence of surface structures to increase internal light scattering. We have extended this concept to increase the efficiencies of man-made solar energy harvesting systems. Specifically, we exploit the wrinkles and deep folds that form on polymer surfaces when subjected to mechanical stress to guide and retain light within the photo-active regions of photovoltaics. Devices constructed on such surfaces show substantial improvements in light harvesting efficiencies, particularly in the near-infrared region where light absorption is otherwise minimal. We report a vast increase in the external quantum efficiency of polymer photovoltaics by more than 600% in the near-infrared, where the useful range of solar energy conversion is extended by more than 200 nm. This method of exploiting elastic instabilities of thin, layered materials is straightforward and represents an economical route to patterning photonic structures over large areas to improve the performance of optoelectronics.
Researchers demonstrate that wrinkles and folds on polymer surfaces can improve the light-harvesting capabilities of solar cells, increasing external quantum efficiencies by up to 600% in the near-infrared. This fabrication method, which employs elastic instabilities of thin, layered materials, may be economical for patterning photonic structures over large areas.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2012.70</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/524 ; 639/624/399 ; Applied and Technical Physics ; Devices ; Economics ; Energy conversion ; Harvesting ; Light scattering ; Photonics ; Photovoltaic cells ; Photovoltaics ; Physics ; Physics and Astronomy ; Polymers ; Quantum Physics ; Solar cells ; Solar energy ; Surface chemistry</subject><ispartof>Nature photonics, 2012-05, Vol.6 (5), p.327-332</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group May 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-2e1bdc91f448b7c355688be20d5aa7a6282a2240617316694c093e3fc909c0bd3</citedby><cites>FETCH-LOGICAL-c384t-2e1bdc91f448b7c355688be20d5aa7a6282a2240617316694c093e3fc909c0bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Jong Bok</creatorcontrib><creatorcontrib>Kim, Pilnam</creatorcontrib><creatorcontrib>Pégard, Nicolas C.</creatorcontrib><creatorcontrib>Oh, Soong Ju</creatorcontrib><creatorcontrib>Kagan, Cherie R.</creatorcontrib><creatorcontrib>Fleischer, Jason W.</creatorcontrib><creatorcontrib>Stone, Howard A.</creatorcontrib><creatorcontrib>Loo, Yueh-Lin</creatorcontrib><title>Wrinkles and deep folds as photonic structures in photovoltaics</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Some of the simplest light-harvesting systems in nature rely on the presence of surface structures to increase internal light scattering. We have extended this concept to increase the efficiencies of man-made solar energy harvesting systems. Specifically, we exploit the wrinkles and deep folds that form on polymer surfaces when subjected to mechanical stress to guide and retain light within the photo-active regions of photovoltaics. Devices constructed on such surfaces show substantial improvements in light harvesting efficiencies, particularly in the near-infrared region where light absorption is otherwise minimal. We report a vast increase in the external quantum efficiency of polymer photovoltaics by more than 600% in the near-infrared, where the useful range of solar energy conversion is extended by more than 200 nm. This method of exploiting elastic instabilities of thin, layered materials is straightforward and represents an economical route to patterning photonic structures over large areas to improve the performance of optoelectronics.
Researchers demonstrate that wrinkles and folds on polymer surfaces can improve the light-harvesting capabilities of solar cells, increasing external quantum efficiencies by up to 600% in the near-infrared. This fabrication method, which employs elastic instabilities of thin, layered materials, may be economical for patterning photonic structures over large areas.</description><subject>639/624/1075/524</subject><subject>639/624/399</subject><subject>Applied and Technical Physics</subject><subject>Devices</subject><subject>Economics</subject><subject>Energy conversion</subject><subject>Harvesting</subject><subject>Light scattering</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymers</subject><subject>Quantum Physics</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Surface chemistry</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkMtLxDAQh4MouK6evRa8eOnu5NE2OYksvmDBi-KxpGmqXbtJzbSC_71ZuoiIp3nwzcfwI-ScwoICl0vXv_nBuwUDyhYFHJAZLYRKhVT88KeX2TE5QdwAZFwxNiNXL6F1753FRLs6qa3tk8Z3dRwxmYStSXAIoxnGEKnWTetP3w26NXhKjhrdoT3b1zl5vr15Wt2n68e7h9X1OjVciiFllla1UbQRQlaF4VmWS1lZBnWmdaFzJplmTEBOC07zXAkDilveGAXKQFXzObmcvH3wH6PFody2aGzXaWf9iGWMgHKmMgkRvfiDbvwYXPwuUlQxYBGK1HKiTPCIwTZlH9qtDl8R2tlkuQ-03AVaFjsvTBcYSfdqw2_v_yff99V6Mg</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Kim, Jong Bok</creator><creator>Kim, Pilnam</creator><creator>Pégard, Nicolas C.</creator><creator>Oh, Soong Ju</creator><creator>Kagan, Cherie R.</creator><creator>Fleischer, Jason W.</creator><creator>Stone, Howard A.</creator><creator>Loo, Yueh-Lin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20120501</creationdate><title>Wrinkles and deep folds as photonic structures in photovoltaics</title><author>Kim, Jong Bok ; Kim, Pilnam ; Pégard, Nicolas C. ; Oh, Soong Ju ; Kagan, Cherie R. ; Fleischer, Jason W. ; Stone, Howard A. ; Loo, Yueh-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-2e1bdc91f448b7c355688be20d5aa7a6282a2240617316694c093e3fc909c0bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/624/1075/524</topic><topic>639/624/399</topic><topic>Applied and Technical Physics</topic><topic>Devices</topic><topic>Economics</topic><topic>Energy conversion</topic><topic>Harvesting</topic><topic>Light scattering</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymers</topic><topic>Quantum Physics</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jong Bok</creatorcontrib><creatorcontrib>Kim, Pilnam</creatorcontrib><creatorcontrib>Pégard, Nicolas C.</creatorcontrib><creatorcontrib>Oh, Soong Ju</creatorcontrib><creatorcontrib>Kagan, Cherie R.</creatorcontrib><creatorcontrib>Fleischer, Jason W.</creatorcontrib><creatorcontrib>Stone, Howard A.</creatorcontrib><creatorcontrib>Loo, Yueh-Lin</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jong Bok</au><au>Kim, Pilnam</au><au>Pégard, Nicolas C.</au><au>Oh, Soong Ju</au><au>Kagan, Cherie R.</au><au>Fleischer, Jason W.</au><au>Stone, Howard A.</au><au>Loo, Yueh-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wrinkles and deep folds as photonic structures in photovoltaics</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>6</volume><issue>5</issue><spage>327</spage><epage>332</epage><pages>327-332</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Some of the simplest light-harvesting systems in nature rely on the presence of surface structures to increase internal light scattering. We have extended this concept to increase the efficiencies of man-made solar energy harvesting systems. Specifically, we exploit the wrinkles and deep folds that form on polymer surfaces when subjected to mechanical stress to guide and retain light within the photo-active regions of photovoltaics. Devices constructed on such surfaces show substantial improvements in light harvesting efficiencies, particularly in the near-infrared region where light absorption is otherwise minimal. We report a vast increase in the external quantum efficiency of polymer photovoltaics by more than 600% in the near-infrared, where the useful range of solar energy conversion is extended by more than 200 nm. This method of exploiting elastic instabilities of thin, layered materials is straightforward and represents an economical route to patterning photonic structures over large areas to improve the performance of optoelectronics.
Researchers demonstrate that wrinkles and folds on polymer surfaces can improve the light-harvesting capabilities of solar cells, increasing external quantum efficiencies by up to 600% in the near-infrared. This fabrication method, which employs elastic instabilities of thin, layered materials, may be economical for patterning photonic structures over large areas.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2012.70</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2012-05, Vol.6 (5), p.327-332 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031329580 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/624/1075/524 639/624/399 Applied and Technical Physics Devices Economics Energy conversion Harvesting Light scattering Photonics Photovoltaic cells Photovoltaics Physics Physics and Astronomy Polymers Quantum Physics Solar cells Solar energy Surface chemistry |
title | Wrinkles and deep folds as photonic structures in photovoltaics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wrinkles%20and%20deep%20folds%20as%20photonic%20structures%20in%20photovoltaics&rft.jtitle=Nature%20photonics&rft.au=Kim,%20Jong%20Bok&rft.date=2012-05-01&rft.volume=6&rft.issue=5&rft.spage=327&rft.epage=332&rft.pages=327-332&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2012.70&rft_dat=%3Cproquest_cross%3E1031329580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019202803&rft_id=info:pmid/&rfr_iscdi=true |