Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects

Ru-Ta-C films deposited on silicon substrates were evaluated as barriers for copper metalization. The films were prepared by magnetron cosputtering using a Ru target and a Ta-C target. Compositions and structure of resultant films were optimally tuned by the respective deposition power of each targe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2012, Vol.41 (1), p.138-143
Hauptverfasser: Fang, J.S., Lin, J.H., Chen, B.Y., Chen, G.S., Chin, T.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 1
container_start_page 138
container_title Journal of electronic materials
container_volume 41
creator Fang, J.S.
Lin, J.H.
Chen, B.Y.
Chen, G.S.
Chin, T.S.
description Ru-Ta-C films deposited on silicon substrates were evaluated as barriers for copper metalization. The films were prepared by magnetron cosputtering using a Ru target and a Ta-C target. Compositions and structure of resultant films were optimally tuned by the respective deposition power of each target. The fabricated Ru-Ta-C films were characterized via four-point probe measurement, x-ray diffractometry, field-emission electron probe microanalysis, and transmission electron microscopy. Failure temperature was evaluated by the sudden rise in electrical resistivity after annealing the Cu/Ru-Ta-C/Si sandwich films, and a reference bilayer Cu/(5 nm Ru)/(5 nm Ta-C)/Si scheme. The optimal compositions were 10 nm Ru 77 Ta 15 C 7 and (5 nm Ru)/(5 nm Ta-C), both of which showed failure temperature of 650°C for 30 min and electrical resistivity less than 150  μ Ω cm. Because of their high thermal stability and low electrical resistivity, both Ru-Ta-C and Ru/Ta-C films are promising barriers for Cu metalization.
doi_str_mv 10.1007/s11664-011-1797-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031322383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031322383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-107ceb04f5c374d3e812d7312a871fb972d377dba0c43c74248e7400d2678d943</originalsourceid><addsrcrecordid>eNp1kNtKw0AQhhdRsB4ewLsgCN6s7uwhu7nU4KFQEEoF75btZiMpaVJ3EqVvb0qKguDVMMw3Pz8fIRfAboAxfYsAaSopA6CgM03lAZmAkoKCSd8OyYSJFKjiQh2TE8QVY6DAwISoWftF5wEr7KrPqtsm854uHM2TexdjFSImZRuTvE-mTReib5sm-A7PyFHpagzn-3lKXh8fFvkznb08TfO7GfVCm44C0z4smSzVsMtCBAO80AK4MxrKZaZ5IbQulo55KbyWXJqgJWMFT7UpMilOyfWYu4ntRx-ws-sKfahr14S2RwtMgOBcGDGgl3_QVdvHZmhnM-AAkJl0gGCEfGwRYyjtJlZrF7dDkt15tKNHO3i0O4921-FqH-zQu7qMrvEV_jxypYTIFBs4PnI4nJr3EH8L_B_-DYlcfzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912111986</pqid></control><display><type>article</type><title>Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects</title><source>SpringerNature Journals</source><creator>Fang, J.S. ; Lin, J.H. ; Chen, B.Y. ; Chen, G.S. ; Chin, T.S.</creator><creatorcontrib>Fang, J.S. ; Lin, J.H. ; Chen, B.Y. ; Chen, G.S. ; Chin, T.S.</creatorcontrib><description>Ru-Ta-C films deposited on silicon substrates were evaluated as barriers for copper metalization. The films were prepared by magnetron cosputtering using a Ru target and a Ta-C target. Compositions and structure of resultant films were optimally tuned by the respective deposition power of each target. The fabricated Ru-Ta-C films were characterized via four-point probe measurement, x-ray diffractometry, field-emission electron probe microanalysis, and transmission electron microscopy. Failure temperature was evaluated by the sudden rise in electrical resistivity after annealing the Cu/Ru-Ta-C/Si sandwich films, and a reference bilayer Cu/(5 nm Ru)/(5 nm Ta-C)/Si scheme. The optimal compositions were 10 nm Ru 77 Ta 15 C 7 and (5 nm Ru)/(5 nm Ta-C), both of which showed failure temperature of 650°C for 30 min and electrical resistivity less than 150  μ Ω cm. Because of their high thermal stability and low electrical resistivity, both Ru-Ta-C and Ru/Ta-C films are promising barriers for Cu metalization.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-011-1797-4</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>ANNEALING PROCESSES ; Applied sciences ; Barriers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: structure, mechanical and thermal properties ; CONNECTORS (ELECTRICAL) ; Copper ; Cross-disciplinary physics: materials science; rheology ; DEPOSITION ; Deposition by sputtering ; ELECTRICAL CONDUCTIVITY ; Electrical resistivity ; Electronics ; Electronics and Microelectronics ; Exact sciences and technology ; FAILURE ; Instrumentation ; Interconnect ; Materials ; Materials Science ; Methods of deposition of films and coatings; film growth and epitaxy ; Optical and Electronic Materials ; Optimization ; Physics ; Silicon ; Solid State Physics ; Substrates ; Tantalum ; Thermal expansion; thermomechanical effects and density ; Thermal properties of condensed matter ; Thermal properties of crystalline solids ; THERMAL STABILITY ; Transmission electron microscopy</subject><ispartof>Journal of electronic materials, 2012, Vol.41 (1), p.138-143</ispartof><rights>TMS 2011</rights><rights>2015 INIST-CNRS</rights><rights>TMS 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-107ceb04f5c374d3e812d7312a871fb972d377dba0c43c74248e7400d2678d943</citedby><cites>FETCH-LOGICAL-c378t-107ceb04f5c374d3e812d7312a871fb972d377dba0c43c74248e7400d2678d943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-011-1797-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-011-1797-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,315,782,786,791,792,4052,4053,23937,23938,25147,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25533950$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, J.S.</creatorcontrib><creatorcontrib>Lin, J.H.</creatorcontrib><creatorcontrib>Chen, B.Y.</creatorcontrib><creatorcontrib>Chen, G.S.</creatorcontrib><creatorcontrib>Chin, T.S.</creatorcontrib><title>Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Ru-Ta-C films deposited on silicon substrates were evaluated as barriers for copper metalization. The films were prepared by magnetron cosputtering using a Ru target and a Ta-C target. Compositions and structure of resultant films were optimally tuned by the respective deposition power of each target. The fabricated Ru-Ta-C films were characterized via four-point probe measurement, x-ray diffractometry, field-emission electron probe microanalysis, and transmission electron microscopy. Failure temperature was evaluated by the sudden rise in electrical resistivity after annealing the Cu/Ru-Ta-C/Si sandwich films, and a reference bilayer Cu/(5 nm Ru)/(5 nm Ta-C)/Si scheme. The optimal compositions were 10 nm Ru 77 Ta 15 C 7 and (5 nm Ru)/(5 nm Ta-C), both of which showed failure temperature of 650°C for 30 min and electrical resistivity less than 150  μ Ω cm. Because of their high thermal stability and low electrical resistivity, both Ru-Ta-C and Ru/Ta-C films are promising barriers for Cu metalization.</description><subject>ANNEALING PROCESSES</subject><subject>Applied sciences</subject><subject>Barriers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>CONNECTORS (ELECTRICAL)</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DEPOSITION</subject><subject>Deposition by sputtering</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>FAILURE</subject><subject>Instrumentation</subject><subject>Interconnect</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optical and Electronic Materials</subject><subject>Optimization</subject><subject>Physics</subject><subject>Silicon</subject><subject>Solid State Physics</subject><subject>Substrates</subject><subject>Tantalum</subject><subject>Thermal expansion; thermomechanical effects and density</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of crystalline solids</subject><subject>THERMAL STABILITY</subject><subject>Transmission electron microscopy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kNtKw0AQhhdRsB4ewLsgCN6s7uwhu7nU4KFQEEoF75btZiMpaVJ3EqVvb0qKguDVMMw3Pz8fIRfAboAxfYsAaSopA6CgM03lAZmAkoKCSd8OyYSJFKjiQh2TE8QVY6DAwISoWftF5wEr7KrPqtsm854uHM2TexdjFSImZRuTvE-mTReib5sm-A7PyFHpagzn-3lKXh8fFvkznb08TfO7GfVCm44C0z4smSzVsMtCBAO80AK4MxrKZaZ5IbQulo55KbyWXJqgJWMFT7UpMilOyfWYu4ntRx-ws-sKfahr14S2RwtMgOBcGDGgl3_QVdvHZmhnM-AAkJl0gGCEfGwRYyjtJlZrF7dDkt15tKNHO3i0O4921-FqH-zQu7qMrvEV_jxypYTIFBs4PnI4nJr3EH8L_B_-DYlcfzQ</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Fang, J.S.</creator><creator>Lin, J.H.</creator><creator>Chen, B.Y.</creator><creator>Chen, G.S.</creator><creator>Chin, T.S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2012</creationdate><title>Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects</title><author>Fang, J.S. ; Lin, J.H. ; Chen, B.Y. ; Chen, G.S. ; Chin, T.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-107ceb04f5c374d3e812d7312a871fb972d377dba0c43c74248e7400d2678d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ANNEALING PROCESSES</topic><topic>Applied sciences</topic><topic>Barriers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>CONNECTORS (ELECTRICAL)</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DEPOSITION</topic><topic>Deposition by sputtering</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>FAILURE</topic><topic>Instrumentation</topic><topic>Interconnect</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optical and Electronic Materials</topic><topic>Optimization</topic><topic>Physics</topic><topic>Silicon</topic><topic>Solid State Physics</topic><topic>Substrates</topic><topic>Tantalum</topic><topic>Thermal expansion; thermomechanical effects and density</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of crystalline solids</topic><topic>THERMAL STABILITY</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, J.S.</creatorcontrib><creatorcontrib>Lin, J.H.</creatorcontrib><creatorcontrib>Chen, B.Y.</creatorcontrib><creatorcontrib>Chen, G.S.</creatorcontrib><creatorcontrib>Chin, T.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, J.S.</au><au>Lin, J.H.</au><au>Chen, B.Y.</au><au>Chen, G.S.</au><au>Chin, T.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2012</date><risdate>2012</risdate><volume>41</volume><issue>1</issue><spage>138</spage><epage>143</epage><pages>138-143</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Ru-Ta-C films deposited on silicon substrates were evaluated as barriers for copper metalization. The films were prepared by magnetron cosputtering using a Ru target and a Ta-C target. Compositions and structure of resultant films were optimally tuned by the respective deposition power of each target. The fabricated Ru-Ta-C films were characterized via four-point probe measurement, x-ray diffractometry, field-emission electron probe microanalysis, and transmission electron microscopy. Failure temperature was evaluated by the sudden rise in electrical resistivity after annealing the Cu/Ru-Ta-C/Si sandwich films, and a reference bilayer Cu/(5 nm Ru)/(5 nm Ta-C)/Si scheme. The optimal compositions were 10 nm Ru 77 Ta 15 C 7 and (5 nm Ru)/(5 nm Ta-C), both of which showed failure temperature of 650°C for 30 min and electrical resistivity less than 150  μ Ω cm. Because of their high thermal stability and low electrical resistivity, both Ru-Ta-C and Ru/Ta-C films are promising barriers for Cu metalization.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-011-1797-4</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2012, Vol.41 (1), p.138-143
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_1031322383
source SpringerNature Journals
subjects ANNEALING PROCESSES
Applied sciences
Barriers
Characterization and Evaluation of Materials
Chemistry and Materials Science
Condensed matter: structure, mechanical and thermal properties
CONNECTORS (ELECTRICAL)
Copper
Cross-disciplinary physics: materials science
rheology
DEPOSITION
Deposition by sputtering
ELECTRICAL CONDUCTIVITY
Electrical resistivity
Electronics
Electronics and Microelectronics
Exact sciences and technology
FAILURE
Instrumentation
Interconnect
Materials
Materials Science
Methods of deposition of films and coatings
film growth and epitaxy
Optical and Electronic Materials
Optimization
Physics
Silicon
Solid State Physics
Substrates
Tantalum
Thermal expansion
thermomechanical effects and density
Thermal properties of condensed matter
Thermal properties of crystalline solids
THERMAL STABILITY
Transmission electron microscopy
title Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T04%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Resistivity%20Ru-Ta-C%20Barriers%20for%20Cu%20Interconnects&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Fang,%20J.S.&rft.date=2012&rft.volume=41&rft.issue=1&rft.spage=138&rft.epage=143&rft.pages=138-143&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-011-1797-4&rft_dat=%3Cproquest_cross%3E1031322383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912111986&rft_id=info:pmid/&rfr_iscdi=true