Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects
Ru-Ta-C films deposited on silicon substrates were evaluated as barriers for copper metalization. The films were prepared by magnetron cosputtering using a Ru target and a Ta-C target. Compositions and structure of resultant films were optimally tuned by the respective deposition power of each targe...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2012, Vol.41 (1), p.138-143 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 1 |
container_start_page | 138 |
container_title | Journal of electronic materials |
container_volume | 41 |
creator | Fang, J.S. Lin, J.H. Chen, B.Y. Chen, G.S. Chin, T.S. |
description | Ru-Ta-C films deposited on silicon substrates were evaluated as barriers for copper metalization. The films were prepared by magnetron cosputtering using a Ru target and a Ta-C target. Compositions and structure of resultant films were optimally tuned by the respective deposition power of each target. The fabricated Ru-Ta-C films were characterized via four-point probe measurement, x-ray diffractometry, field-emission electron probe microanalysis, and transmission electron microscopy. Failure temperature was evaluated by the sudden rise in electrical resistivity after annealing the Cu/Ru-Ta-C/Si sandwich films, and a reference bilayer Cu/(5 nm Ru)/(5 nm Ta-C)/Si scheme. The optimal compositions were 10 nm Ru
77
Ta
15
C
7
and (5 nm Ru)/(5 nm Ta-C), both of which showed failure temperature of 650°C for 30 min and electrical resistivity less than 150
μ
Ω cm. Because of their high thermal stability and low electrical resistivity, both Ru-Ta-C and Ru/Ta-C films are promising barriers for Cu metalization. |
doi_str_mv | 10.1007/s11664-011-1797-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031322383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543787391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-107ceb04f5c374d3e812d7312a871fb972d377dba0c43c74248e7400d2678d943</originalsourceid><addsrcrecordid>eNp1kNtKw0AQhhdRsB4ewLsgCN6s7uwhu7nU4KFQEEoF75btZiMpaVJ3EqVvb0qKguDVMMw3Pz8fIRfAboAxfYsAaSopA6CgM03lAZmAkoKCSd8OyYSJFKjiQh2TE8QVY6DAwISoWftF5wEr7KrPqtsm854uHM2TexdjFSImZRuTvE-mTReib5sm-A7PyFHpagzn-3lKXh8fFvkznb08TfO7GfVCm44C0z4smSzVsMtCBAO80AK4MxrKZaZ5IbQulo55KbyWXJqgJWMFT7UpMilOyfWYu4ntRx-ws-sKfahr14S2RwtMgOBcGDGgl3_QVdvHZmhnM-AAkJl0gGCEfGwRYyjtJlZrF7dDkt15tKNHO3i0O4921-FqH-zQu7qMrvEV_jxypYTIFBs4PnI4nJr3EH8L_B_-DYlcfzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912111986</pqid></control><display><type>article</type><title>Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects</title><source>Springer Journals</source><creator>Fang, J.S. ; Lin, J.H. ; Chen, B.Y. ; Chen, G.S. ; Chin, T.S.</creator><creatorcontrib>Fang, J.S. ; Lin, J.H. ; Chen, B.Y. ; Chen, G.S. ; Chin, T.S.</creatorcontrib><description>Ru-Ta-C films deposited on silicon substrates were evaluated as barriers for copper metalization. The films were prepared by magnetron cosputtering using a Ru target and a Ta-C target. Compositions and structure of resultant films were optimally tuned by the respective deposition power of each target. The fabricated Ru-Ta-C films were characterized via four-point probe measurement, x-ray diffractometry, field-emission electron probe microanalysis, and transmission electron microscopy. Failure temperature was evaluated by the sudden rise in electrical resistivity after annealing the Cu/Ru-Ta-C/Si sandwich films, and a reference bilayer Cu/(5 nm Ru)/(5 nm Ta-C)/Si scheme. The optimal compositions were 10 nm Ru
77
Ta
15
C
7
and (5 nm Ru)/(5 nm Ta-C), both of which showed failure temperature of 650°C for 30 min and electrical resistivity less than 150
μ
Ω cm. Because of their high thermal stability and low electrical resistivity, both Ru-Ta-C and Ru/Ta-C films are promising barriers for Cu metalization.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-011-1797-4</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>ANNEALING PROCESSES ; Applied sciences ; Barriers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: structure, mechanical and thermal properties ; CONNECTORS (ELECTRICAL) ; Copper ; Cross-disciplinary physics: materials science; rheology ; DEPOSITION ; Deposition by sputtering ; ELECTRICAL CONDUCTIVITY ; Electrical resistivity ; Electronics ; Electronics and Microelectronics ; Exact sciences and technology ; FAILURE ; Instrumentation ; Interconnect ; Materials ; Materials Science ; Methods of deposition of films and coatings; film growth and epitaxy ; Optical and Electronic Materials ; Optimization ; Physics ; Silicon ; Solid State Physics ; Substrates ; Tantalum ; Thermal expansion; thermomechanical effects and density ; Thermal properties of condensed matter ; Thermal properties of crystalline solids ; THERMAL STABILITY ; Transmission electron microscopy</subject><ispartof>Journal of electronic materials, 2012, Vol.41 (1), p.138-143</ispartof><rights>TMS 2011</rights><rights>2015 INIST-CNRS</rights><rights>TMS 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-107ceb04f5c374d3e812d7312a871fb972d377dba0c43c74248e7400d2678d943</citedby><cites>FETCH-LOGICAL-c378t-107ceb04f5c374d3e812d7312a871fb972d377dba0c43c74248e7400d2678d943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-011-1797-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-011-1797-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,315,782,786,791,792,4052,4053,23937,23938,25147,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25533950$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, J.S.</creatorcontrib><creatorcontrib>Lin, J.H.</creatorcontrib><creatorcontrib>Chen, B.Y.</creatorcontrib><creatorcontrib>Chen, G.S.</creatorcontrib><creatorcontrib>Chin, T.S.</creatorcontrib><title>Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Ru-Ta-C films deposited on silicon substrates were evaluated as barriers for copper metalization. The films were prepared by magnetron cosputtering using a Ru target and a Ta-C target. Compositions and structure of resultant films were optimally tuned by the respective deposition power of each target. The fabricated Ru-Ta-C films were characterized via four-point probe measurement, x-ray diffractometry, field-emission electron probe microanalysis, and transmission electron microscopy. Failure temperature was evaluated by the sudden rise in electrical resistivity after annealing the Cu/Ru-Ta-C/Si sandwich films, and a reference bilayer Cu/(5 nm Ru)/(5 nm Ta-C)/Si scheme. The optimal compositions were 10 nm Ru
77
Ta
15
C
7
and (5 nm Ru)/(5 nm Ta-C), both of which showed failure temperature of 650°C for 30 min and electrical resistivity less than 150
μ
Ω cm. Because of their high thermal stability and low electrical resistivity, both Ru-Ta-C and Ru/Ta-C films are promising barriers for Cu metalization.</description><subject>ANNEALING PROCESSES</subject><subject>Applied sciences</subject><subject>Barriers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>CONNECTORS (ELECTRICAL)</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DEPOSITION</subject><subject>Deposition by sputtering</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>FAILURE</subject><subject>Instrumentation</subject><subject>Interconnect</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optical and Electronic Materials</subject><subject>Optimization</subject><subject>Physics</subject><subject>Silicon</subject><subject>Solid State Physics</subject><subject>Substrates</subject><subject>Tantalum</subject><subject>Thermal expansion; thermomechanical effects and density</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of crystalline solids</subject><subject>THERMAL STABILITY</subject><subject>Transmission electron microscopy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kNtKw0AQhhdRsB4ewLsgCN6s7uwhu7nU4KFQEEoF75btZiMpaVJ3EqVvb0qKguDVMMw3Pz8fIRfAboAxfYsAaSopA6CgM03lAZmAkoKCSd8OyYSJFKjiQh2TE8QVY6DAwISoWftF5wEr7KrPqtsm854uHM2TexdjFSImZRuTvE-mTReib5sm-A7PyFHpagzn-3lKXh8fFvkznb08TfO7GfVCm44C0z4smSzVsMtCBAO80AK4MxrKZaZ5IbQulo55KbyWXJqgJWMFT7UpMilOyfWYu4ntRx-ws-sKfahr14S2RwtMgOBcGDGgl3_QVdvHZmhnM-AAkJl0gGCEfGwRYyjtJlZrF7dDkt15tKNHO3i0O4921-FqH-zQu7qMrvEV_jxypYTIFBs4PnI4nJr3EH8L_B_-DYlcfzQ</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Fang, J.S.</creator><creator>Lin, J.H.</creator><creator>Chen, B.Y.</creator><creator>Chen, G.S.</creator><creator>Chin, T.S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2012</creationdate><title>Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects</title><author>Fang, J.S. ; Lin, J.H. ; Chen, B.Y. ; Chen, G.S. ; Chin, T.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-107ceb04f5c374d3e812d7312a871fb972d377dba0c43c74248e7400d2678d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ANNEALING PROCESSES</topic><topic>Applied sciences</topic><topic>Barriers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>CONNECTORS (ELECTRICAL)</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DEPOSITION</topic><topic>Deposition by sputtering</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>FAILURE</topic><topic>Instrumentation</topic><topic>Interconnect</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optical and Electronic Materials</topic><topic>Optimization</topic><topic>Physics</topic><topic>Silicon</topic><topic>Solid State Physics</topic><topic>Substrates</topic><topic>Tantalum</topic><topic>Thermal expansion; thermomechanical effects and density</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of crystalline solids</topic><topic>THERMAL STABILITY</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, J.S.</creatorcontrib><creatorcontrib>Lin, J.H.</creatorcontrib><creatorcontrib>Chen, B.Y.</creatorcontrib><creatorcontrib>Chen, G.S.</creatorcontrib><creatorcontrib>Chin, T.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, J.S.</au><au>Lin, J.H.</au><au>Chen, B.Y.</au><au>Chen, G.S.</au><au>Chin, T.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2012</date><risdate>2012</risdate><volume>41</volume><issue>1</issue><spage>138</spage><epage>143</epage><pages>138-143</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Ru-Ta-C films deposited on silicon substrates were evaluated as barriers for copper metalization. The films were prepared by magnetron cosputtering using a Ru target and a Ta-C target. Compositions and structure of resultant films were optimally tuned by the respective deposition power of each target. The fabricated Ru-Ta-C films were characterized via four-point probe measurement, x-ray diffractometry, field-emission electron probe microanalysis, and transmission electron microscopy. Failure temperature was evaluated by the sudden rise in electrical resistivity after annealing the Cu/Ru-Ta-C/Si sandwich films, and a reference bilayer Cu/(5 nm Ru)/(5 nm Ta-C)/Si scheme. The optimal compositions were 10 nm Ru
77
Ta
15
C
7
and (5 nm Ru)/(5 nm Ta-C), both of which showed failure temperature of 650°C for 30 min and electrical resistivity less than 150
μ
Ω cm. Because of their high thermal stability and low electrical resistivity, both Ru-Ta-C and Ru/Ta-C films are promising barriers for Cu metalization.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-011-1797-4</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2012, Vol.41 (1), p.138-143 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_1031322383 |
source | Springer Journals |
subjects | ANNEALING PROCESSES Applied sciences Barriers Characterization and Evaluation of Materials Chemistry and Materials Science Condensed matter: structure, mechanical and thermal properties CONNECTORS (ELECTRICAL) Copper Cross-disciplinary physics: materials science rheology DEPOSITION Deposition by sputtering ELECTRICAL CONDUCTIVITY Electrical resistivity Electronics Electronics and Microelectronics Exact sciences and technology FAILURE Instrumentation Interconnect Materials Materials Science Methods of deposition of films and coatings film growth and epitaxy Optical and Electronic Materials Optimization Physics Silicon Solid State Physics Substrates Tantalum Thermal expansion thermomechanical effects and density Thermal properties of condensed matter Thermal properties of crystalline solids THERMAL STABILITY Transmission electron microscopy |
title | Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T16%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Resistivity%20Ru-Ta-C%20Barriers%20for%20Cu%20Interconnects&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Fang,%20J.S.&rft.date=2012&rft.volume=41&rft.issue=1&rft.spage=138&rft.epage=143&rft.pages=138-143&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-011-1797-4&rft_dat=%3Cproquest_cross%3E2543787391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912111986&rft_id=info:pmid/&rfr_iscdi=true |