Development of a Thermal Buffering Device to Cope with Temperature Fluctuations for a Thermoelectric Power Generator
To stabilize the heat input to a thermoelectric generator (TEG) and protect it from large temperature fluctuations, a thermal buffering device (TBD) was fabricated and examined using a typical Bi-Te TEG module and a brand-new Mg 2 Si TEG module. The TBD comprises two adjoining heat storage container...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2012-06, Vol.41 (6), p.1256-1262 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1262 |
---|---|
container_issue | 6 |
container_start_page | 1256 |
container_title | Journal of electronic materials |
container_volume | 41 |
creator | Mizuno, Kuniaki Sawada, Kazunori Nemoto, Takashi Iida, Tsutomu |
description | To stabilize the heat input to a thermoelectric generator (TEG) and protect it from large temperature fluctuations, a thermal buffering device (TBD) was fabricated and examined using a typical Bi-Te TEG module and a brand-new Mg
2
Si TEG module. The TBD comprises two adjoining heat storage containers, each containing different alloys, which can be optimized for the temperature range of the TEG. The combination of two alloys in series diminishes the thermal fluctuations, stabilizing the heat input to the TEG module. This is achieved by having two metallic materials with large enthalpies of fusion that can be placed between the heat source and the TEG. The combination of the two alloys can be optimized for the temperature ranges of Bi-Te, Pb-Te, or Co-Sb. For the Bi-Te TEG, 15Al-85Zn and 30Sn-70Zn alloys were used for the heat source side and the TEG side, respectively. The corresponding alloys for the Mg
2
Si TEG were 20Ni-80Al and 7Si-93Al. With the use of a TBD, the Bi-Te TEG exhibited no notable damage even in the rather high temperature range beyond ∼573 K. For the Mg
2
Si TEG, no operational damage of the Mg
2
Si TEG module was observed even with a temperature of 1020 K. |
doi_str_mv | 10.1007/s11664-012-1911-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031319248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031319248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-d8346863244852472efc4cd4a6396cb3389092dd2687303d96c17017b1b05c553</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxUVJoZttP0BvglDIxa1G_ywfk002CQTSwxZ6M1p53HWwLUeSG_Ltq2XTEAKZy8Dwe4_HPEK-AvsOjJU_IoDWsmDAC6gACv6BLEBJUYDRv4_IggkNheJCfSLHMd4zBgoMLEi6wL_Y-2nAMVHfUks3OwyD7en53LYYuvEPzUjnkCZPV35C-tilHd3gMGGwaQ5I1_3s0mxT58dIWx_-m3js0aXQOfrTP2KgVzjuJT58Jh9b20f88ryX5Nf6crO6Lm7vrm5WZ7eFE2WVisYIqY0WXEqjuCw5tk66RlotKu22QpiKVbxpuDalYKLJRygZlFvYMuWUEktyevCdgn-YMaZ66KLDvrcj-jnWwAQIqLg0GT15g977OYw5XaZAMTCy0pmCA-WCjzFgW0-hG2x4ylC976E-9FDnHup9DzXPmm_PzjY627fBjq6LL0KumS7zZI4fuDjtv47hdYL3zP8B0ieWkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015018496</pqid></control><display><type>article</type><title>Development of a Thermal Buffering Device to Cope with Temperature Fluctuations for a Thermoelectric Power Generator</title><source>Springer Online Journals Complete</source><creator>Mizuno, Kuniaki ; Sawada, Kazunori ; Nemoto, Takashi ; Iida, Tsutomu</creator><creatorcontrib>Mizuno, Kuniaki ; Sawada, Kazunori ; Nemoto, Takashi ; Iida, Tsutomu</creatorcontrib><description>To stabilize the heat input to a thermoelectric generator (TEG) and protect it from large temperature fluctuations, a thermal buffering device (TBD) was fabricated and examined using a typical Bi-Te TEG module and a brand-new Mg
2
Si TEG module. The TBD comprises two adjoining heat storage containers, each containing different alloys, which can be optimized for the temperature range of the TEG. The combination of two alloys in series diminishes the thermal fluctuations, stabilizing the heat input to the TEG module. This is achieved by having two metallic materials with large enthalpies of fusion that can be placed between the heat source and the TEG. The combination of the two alloys can be optimized for the temperature ranges of Bi-Te, Pb-Te, or Co-Sb. For the Bi-Te TEG, 15Al-85Zn and 30Sn-70Zn alloys were used for the heat source side and the TEG side, respectively. The corresponding alloys for the Mg
2
Si TEG were 20Ni-80Al and 7Si-93Al. With the use of a TBD, the Bi-Te TEG exhibited no notable damage even in the rather high temperature range beyond ∼573 K. For the Mg
2
Si TEG, no operational damage of the Mg
2
Si TEG module was observed even with a temperature of 1020 K.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-012-1911-2</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Devices ; Electricity generation ; Electronics ; Electronics and Microelectronics ; Exact sciences and technology ; Fluctuation ; Instrumentation ; Intermetallic compounds ; Intermetallics ; Magnesium compounds ; Materials Science ; Modules ; Optical and Electronic Materials ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Silicides ; Solid State Physics ; Temperature effects ; Thermodynamics ; Thermoelectric, pyroelectric devices, etc</subject><ispartof>Journal of electronic materials, 2012-06, Vol.41 (6), p.1256-1262</ispartof><rights>TMS 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-d8346863244852472efc4cd4a6396cb3389092dd2687303d96c17017b1b05c553</citedby><cites>FETCH-LOGICAL-c379t-d8346863244852472efc4cd4a6396cb3389092dd2687303d96c17017b1b05c553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-012-1911-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-012-1911-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,23935,23936,25145,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26067777$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mizuno, Kuniaki</creatorcontrib><creatorcontrib>Sawada, Kazunori</creatorcontrib><creatorcontrib>Nemoto, Takashi</creatorcontrib><creatorcontrib>Iida, Tsutomu</creatorcontrib><title>Development of a Thermal Buffering Device to Cope with Temperature Fluctuations for a Thermoelectric Power Generator</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>To stabilize the heat input to a thermoelectric generator (TEG) and protect it from large temperature fluctuations, a thermal buffering device (TBD) was fabricated and examined using a typical Bi-Te TEG module and a brand-new Mg
2
Si TEG module. The TBD comprises two adjoining heat storage containers, each containing different alloys, which can be optimized for the temperature range of the TEG. The combination of two alloys in series diminishes the thermal fluctuations, stabilizing the heat input to the TEG module. This is achieved by having two metallic materials with large enthalpies of fusion that can be placed between the heat source and the TEG. The combination of the two alloys can be optimized for the temperature ranges of Bi-Te, Pb-Te, or Co-Sb. For the Bi-Te TEG, 15Al-85Zn and 30Sn-70Zn alloys were used for the heat source side and the TEG side, respectively. The corresponding alloys for the Mg
2
Si TEG were 20Ni-80Al and 7Si-93Al. With the use of a TBD, the Bi-Te TEG exhibited no notable damage even in the rather high temperature range beyond ∼573 K. For the Mg
2
Si TEG, no operational damage of the Mg
2
Si TEG module was observed even with a temperature of 1020 K.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Devices</subject><subject>Electricity generation</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Fluctuation</subject><subject>Instrumentation</subject><subject>Intermetallic compounds</subject><subject>Intermetallics</subject><subject>Magnesium compounds</subject><subject>Materials Science</subject><subject>Modules</subject><subject>Optical and Electronic Materials</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Silicides</subject><subject>Solid State Physics</subject><subject>Temperature effects</subject><subject>Thermodynamics</subject><subject>Thermoelectric, pyroelectric devices, etc</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU9r3DAQxUVJoZttP0BvglDIxa1G_ywfk002CQTSwxZ6M1p53HWwLUeSG_Ltq2XTEAKZy8Dwe4_HPEK-AvsOjJU_IoDWsmDAC6gACv6BLEBJUYDRv4_IggkNheJCfSLHMd4zBgoMLEi6wL_Y-2nAMVHfUks3OwyD7en53LYYuvEPzUjnkCZPV35C-tilHd3gMGGwaQ5I1_3s0mxT58dIWx_-m3js0aXQOfrTP2KgVzjuJT58Jh9b20f88ryX5Nf6crO6Lm7vrm5WZ7eFE2WVisYIqY0WXEqjuCw5tk66RlotKu22QpiKVbxpuDalYKLJRygZlFvYMuWUEktyevCdgn-YMaZ66KLDvrcj-jnWwAQIqLg0GT15g977OYw5XaZAMTCy0pmCA-WCjzFgW0-hG2x4ylC976E-9FDnHup9DzXPmm_PzjY627fBjq6LL0KumS7zZI4fuDjtv47hdYL3zP8B0ieWkQ</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Mizuno, Kuniaki</creator><creator>Sawada, Kazunori</creator><creator>Nemoto, Takashi</creator><creator>Iida, Tsutomu</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120601</creationdate><title>Development of a Thermal Buffering Device to Cope with Temperature Fluctuations for a Thermoelectric Power Generator</title><author>Mizuno, Kuniaki ; Sawada, Kazunori ; Nemoto, Takashi ; Iida, Tsutomu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-d8346863244852472efc4cd4a6396cb3389092dd2687303d96c17017b1b05c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Devices</topic><topic>Electricity generation</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Fluctuation</topic><topic>Instrumentation</topic><topic>Intermetallic compounds</topic><topic>Intermetallics</topic><topic>Magnesium compounds</topic><topic>Materials Science</topic><topic>Modules</topic><topic>Optical and Electronic Materials</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Silicides</topic><topic>Solid State Physics</topic><topic>Temperature effects</topic><topic>Thermodynamics</topic><topic>Thermoelectric, pyroelectric devices, etc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mizuno, Kuniaki</creatorcontrib><creatorcontrib>Sawada, Kazunori</creatorcontrib><creatorcontrib>Nemoto, Takashi</creatorcontrib><creatorcontrib>Iida, Tsutomu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mizuno, Kuniaki</au><au>Sawada, Kazunori</au><au>Nemoto, Takashi</au><au>Iida, Tsutomu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Thermal Buffering Device to Cope with Temperature Fluctuations for a Thermoelectric Power Generator</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>41</volume><issue>6</issue><spage>1256</spage><epage>1262</epage><pages>1256-1262</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>To stabilize the heat input to a thermoelectric generator (TEG) and protect it from large temperature fluctuations, a thermal buffering device (TBD) was fabricated and examined using a typical Bi-Te TEG module and a brand-new Mg
2
Si TEG module. The TBD comprises two adjoining heat storage containers, each containing different alloys, which can be optimized for the temperature range of the TEG. The combination of two alloys in series diminishes the thermal fluctuations, stabilizing the heat input to the TEG module. This is achieved by having two metallic materials with large enthalpies of fusion that can be placed between the heat source and the TEG. The combination of the two alloys can be optimized for the temperature ranges of Bi-Te, Pb-Te, or Co-Sb. For the Bi-Te TEG, 15Al-85Zn and 30Sn-70Zn alloys were used for the heat source side and the TEG side, respectively. The corresponding alloys for the Mg
2
Si TEG were 20Ni-80Al and 7Si-93Al. With the use of a TBD, the Bi-Te TEG exhibited no notable damage even in the rather high temperature range beyond ∼573 K. For the Mg
2
Si TEG, no operational damage of the Mg
2
Si TEG module was observed even with a temperature of 1020 K.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-012-1911-2</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2012-06, Vol.41 (6), p.1256-1262 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_1031319248 |
source | Springer Online Journals Complete |
subjects | Alloys Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Devices Electricity generation Electronics Electronics and Microelectronics Exact sciences and technology Fluctuation Instrumentation Intermetallic compounds Intermetallics Magnesium compounds Materials Science Modules Optical and Electronic Materials Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Silicides Solid State Physics Temperature effects Thermodynamics Thermoelectric, pyroelectric devices, etc |
title | Development of a Thermal Buffering Device to Cope with Temperature Fluctuations for a Thermoelectric Power Generator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Thermal%20Buffering%20Device%20to%20Cope%20with%20Temperature%20Fluctuations%20for%20a%20Thermoelectric%20Power%20Generator&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Mizuno,%20Kuniaki&rft.date=2012-06-01&rft.volume=41&rft.issue=6&rft.spage=1256&rft.epage=1262&rft.pages=1256-1262&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-012-1911-2&rft_dat=%3Cproquest_cross%3E1031319248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015018496&rft_id=info:pmid/&rfr_iscdi=true |