Graphical modelling of multivariate time series

We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependences. The models are derived from ordina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2012-06, Vol.153 (1-2), p.233-268
1. Verfasser: Eichler, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 1-2
container_start_page 233
container_title Probability theory and related fields
container_volume 153
creator Eichler, Michael
description We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependences. The models are derived from ordinary time series models by imposing constraints that are encoded by mixed graphs. In these graphs each component series is represented by a single vertex and directed edges indicate possible Granger-causal relationships between variables while undirected edges are used to map the contemporaneous dependence structure. We introduce various notions of Granger-causal Markov properties and discuss the relationships among them and to other Markov properties that can be applied in this context. Examples for graphical time series models include nonlinear autoregressive models and multivariate ARCH models.
doi_str_mv 10.1007/s00440-011-0345-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031317354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673888691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-20448f96385bf6211fad7fae33c2754dafce0533f9f06785767974e45398d0fe3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN2AGzdj7817llK0CgU3ug5xJqkp86jJjOC_N6UuRNDV3Xzn3MNHyCXCDQKoRQLgHEpALIFxUeojMkPOaElB8mMyA1S61CDwlJyltAUAyjidkcUq2t1bqG1bdEPj2jb0m2LwRTe1Y_iwMdjRFWPoXJFcDC6dkxNv2-Quvu-cvNzfPS8fyvXT6nF5uy5rTmHMXznXvpJMi1cvKaK3jfLWMVZTJXhjfe1AMOYrD1JpoaSqFHdcsEo34B2bk-tD7y4O75NLo-lCqvM-27thSgaBIUPFBM_o1S90O0yxz-sMlSi5kiDEfxRmOYprUDpTeKDqOKQUnTe7GDobPzNk9qLNQbTJos1etNln6CGTMttvXPzZ_FfoC3jXfPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017748078</pqid></control><display><type>article</type><title>Graphical modelling of multivariate time series</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Eichler, Michael</creator><creatorcontrib>Eichler, Michael</creatorcontrib><description>We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependences. The models are derived from ordinary time series models by imposing constraints that are encoded by mixed graphs. In these graphs each component series is represented by a single vertex and directed edges indicate possible Granger-causal relationships between variables while undirected edges are used to map the contemporaneous dependence structure. We introduce various notions of Granger-causal Markov properties and discuss the relationships among them and to other Markov properties that can be applied in this context. Examples for graphical time series models include nonlinear autoregressive models and multivariate ARCH models.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-011-0345-8</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Autoregressive models ; Causality ; Constraint modelling ; Dependence ; Dynamic tests ; Economics ; Finance ; Graph representations ; Graph theory ; Graphical representations ; Graphs ; Independence ; Insurance ; Management ; Markov analysis ; Markov processes ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Modelling ; Multivariate analysis ; Nonlinearity ; Operations Research/Decision Theory ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistics for Business ; Studies ; Theoretical ; Time series ; Variables</subject><ispartof>Probability theory and related fields, 2012-06, Vol.153 (1-2), p.233-268</ispartof><rights>The Author(s) 2011</rights><rights>Springer-Verlag 2012</rights><rights>The Author(s) 2011. This work is published under http://creativecommons.org/licenses/by-nc/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-20448f96385bf6211fad7fae33c2754dafce0533f9f06785767974e45398d0fe3</citedby><cites>FETCH-LOGICAL-c420t-20448f96385bf6211fad7fae33c2754dafce0533f9f06785767974e45398d0fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-011-0345-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-011-0345-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Eichler, Michael</creatorcontrib><title>Graphical modelling of multivariate time series</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependences. The models are derived from ordinary time series models by imposing constraints that are encoded by mixed graphs. In these graphs each component series is represented by a single vertex and directed edges indicate possible Granger-causal relationships between variables while undirected edges are used to map the contemporaneous dependence structure. We introduce various notions of Granger-causal Markov properties and discuss the relationships among them and to other Markov properties that can be applied in this context. Examples for graphical time series models include nonlinear autoregressive models and multivariate ARCH models.</description><subject>Autoregressive models</subject><subject>Causality</subject><subject>Constraint modelling</subject><subject>Dependence</subject><subject>Dynamic tests</subject><subject>Economics</subject><subject>Finance</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>Independence</subject><subject>Insurance</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modelling</subject><subject>Multivariate analysis</subject><subject>Nonlinearity</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Studies</subject><subject>Theoretical</subject><subject>Time series</subject><subject>Variables</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_wN2AGzdj7817llK0CgU3ug5xJqkp86jJjOC_N6UuRNDV3Xzn3MNHyCXCDQKoRQLgHEpALIFxUeojMkPOaElB8mMyA1S61CDwlJyltAUAyjidkcUq2t1bqG1bdEPj2jb0m2LwRTe1Y_iwMdjRFWPoXJFcDC6dkxNv2-Quvu-cvNzfPS8fyvXT6nF5uy5rTmHMXznXvpJMi1cvKaK3jfLWMVZTJXhjfe1AMOYrD1JpoaSqFHdcsEo34B2bk-tD7y4O75NLo-lCqvM-27thSgaBIUPFBM_o1S90O0yxz-sMlSi5kiDEfxRmOYprUDpTeKDqOKQUnTe7GDobPzNk9qLNQbTJos1etNln6CGTMttvXPzZ_FfoC3jXfPM</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Eichler, Michael</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20120601</creationdate><title>Graphical modelling of multivariate time series</title><author>Eichler, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-20448f96385bf6211fad7fae33c2754dafce0533f9f06785767974e45398d0fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Autoregressive models</topic><topic>Causality</topic><topic>Constraint modelling</topic><topic>Dependence</topic><topic>Dynamic tests</topic><topic>Economics</topic><topic>Finance</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>Independence</topic><topic>Insurance</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modelling</topic><topic>Multivariate analysis</topic><topic>Nonlinearity</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Studies</topic><topic>Theoretical</topic><topic>Time series</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eichler, Michael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eichler, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphical modelling of multivariate time series</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>153</volume><issue>1-2</issue><spage>233</spage><epage>268</epage><pages>233-268</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependences. The models are derived from ordinary time series models by imposing constraints that are encoded by mixed graphs. In these graphs each component series is represented by a single vertex and directed edges indicate possible Granger-causal relationships between variables while undirected edges are used to map the contemporaneous dependence structure. We introduce various notions of Granger-causal Markov properties and discuss the relationships among them and to other Markov properties that can be applied in this context. Examples for graphical time series models include nonlinear autoregressive models and multivariate ARCH models.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00440-011-0345-8</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2012-06, Vol.153 (1-2), p.233-268
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_miscellaneous_1031317354
source EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals
subjects Autoregressive models
Causality
Constraint modelling
Dependence
Dynamic tests
Economics
Finance
Graph representations
Graph theory
Graphical representations
Graphs
Independence
Insurance
Management
Markov analysis
Markov processes
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematical models
Mathematics
Mathematics and Statistics
Modelling
Multivariate analysis
Nonlinearity
Operations Research/Decision Theory
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Statistics for Business
Studies
Theoretical
Time series
Variables
title Graphical modelling of multivariate time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphical%20modelling%20of%20multivariate%20time%20series&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Eichler,%20Michael&rft.date=2012-06-01&rft.volume=153&rft.issue=1-2&rft.spage=233&rft.epage=268&rft.pages=233-268&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-011-0345-8&rft_dat=%3Cproquest_cross%3E2673888691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017748078&rft_id=info:pmid/&rfr_iscdi=true