Accelerating Relevance-Vector-Machine-Based Classification of Hyperspectral Image with Parallel Computing
Benefiting from the kernel skill and the sparse property, the relevance vector machine (RVM) could acquire a sparse solution, with an equivalent generalization ability compared with the support vector machine. The sparse property requires much less time in the prediction, making RVM potential in cla...
Gespeichert in:
Veröffentlicht in: | Mathematical Problems in Engineering 2012-01, Vol.2012 (2012), p.12-24-101 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24-101 |
---|---|
container_issue | 2012 |
container_start_page | 12 |
container_title | Mathematical Problems in Engineering |
container_volume | 2012 |
creator | Dong, Chao Tian, Lianfang |
description | Benefiting from the kernel skill and the sparse property, the relevance vector machine (RVM) could acquire a sparse solution, with an equivalent generalization ability compared with the support vector machine. The sparse property requires much less time in the prediction, making RVM potential in classifying the large-scale hyperspectral image. However, RVM is not widespread influenced by its slow training procedure. To solve the problem, the classification of the hyperspectral image using RVM is accelerated by the parallel computing technique in this paper. The parallelization is revealed from the aspects of the multiclass strategy, the ensemble of multiple weak classifiers, and the matrix operations. The parallel RVMs are implemented using the C language plus the parallel functions of the linear algebra packages and the message passing interface library. The proposed methods are evaluated by the AVIRIS Indian Pines data set on the Beowulf cluster and the multicore platforms. It shows that the parallel RVMs accelerate the training procedure obviously. |
doi_str_mv | 10.1155/2012/252979 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031316248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20161117002_201212_201703210003_201703210003_12_24_101</airiti_id><sourcerecordid>2677455831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-440d1426a2b9c8f46b310ec0fd5f26720dd16f9d161715889185d66bae182cf33</originalsourceid><addsrcrecordid>eNqF0Utv1DAQAOAIgUQpnLijSFwQKNTjV5xjWQGtVKBCgLhFs864dZVNUjtL1X_PpEHiceFij-3Po_G4KJ6CeA1gzJEUII-kkU3d3CsOwFhVGdD1fY6F1BVI9f1h8SjnKyEkGHAHRTz2nnpKOMfhovzM4Q8cPFXfyM9jqj6gv4wDVW8wU1duesw5huhZj0M5hvLkdqKUJ8YJ-_J0hxdU3sT5sjxH3uipLzfjbtovyR8XDwL2mZ78mg-Lr-_eftmcVGef3p9ujs8q1FbMldaiAy0tym3jXdB2q0CQF6EzQdpaiq4DGxoeoAbjXAPOdNZukcBJH5Q6LF6seac0Xu8pz-0uZn5jjwON-9yCUKDASu2YPv-HXo37NHB1rMBpUTuoWb1alU9jzolCO6W4w3TLqF3a3i5tb9e2s365au5bhzfxP_jZiokJBfwDC9BaM_i4AowpzvF3feecxgJAzT95lxLuplooyXeF-nuxHOrlTeonXNqfkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018407817</pqid></control><display><type>article</type><title>Accelerating Relevance-Vector-Machine-Based Classification of Hyperspectral Image with Parallel Computing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Dong, Chao ; Tian, Lianfang</creator><contributor>Chou, Jyh Horng</contributor><creatorcontrib>Dong, Chao ; Tian, Lianfang ; Chou, Jyh Horng</creatorcontrib><description>Benefiting from the kernel skill and the sparse property, the relevance vector machine (RVM) could acquire a sparse solution, with an equivalent generalization ability compared with the support vector machine. The sparse property requires much less time in the prediction, making RVM potential in classifying the large-scale hyperspectral image. However, RVM is not widespread influenced by its slow training procedure. To solve the problem, the classification of the hyperspectral image using RVM is accelerated by the parallel computing technique in this paper. The parallelization is revealed from the aspects of the multiclass strategy, the ensemble of multiple weak classifiers, and the matrix operations. The parallel RVMs are implemented using the C language plus the parallel functions of the linear algebra packages and the message passing interface library. The proposed methods are evaluated by the AVIRIS Indian Pines data set on the Beowulf cluster and the multicore platforms. It shows that the parallel RVMs accelerate the training procedure obviously.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2012/252979</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Classification ; Computation ; Efficiency ; Engineering ; Hyperspectral imaging ; Image acquisition ; Image classification ; Linear algebra ; Machine learning ; Mathematical analysis ; Mathematical models ; Message passing ; Parallel processing ; Remote sensing ; Studies ; Support vector machines ; Training</subject><ispartof>Mathematical Problems in Engineering, 2012-01, Vol.2012 (2012), p.12-24-101</ispartof><rights>Copyright © 2012 Chao Dong and Lianfang Tian.</rights><rights>Copyright © 2012 Chao Dong and Lianfang Tian. Chao Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-440d1426a2b9c8f46b310ec0fd5f26720dd16f9d161715889185d66bae182cf33</citedby><cites>FETCH-LOGICAL-a460t-440d1426a2b9c8f46b310ec0fd5f26720dd16f9d161715889185d66bae182cf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Chou, Jyh Horng</contributor><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Tian, Lianfang</creatorcontrib><title>Accelerating Relevance-Vector-Machine-Based Classification of Hyperspectral Image with Parallel Computing</title><title>Mathematical Problems in Engineering</title><description>Benefiting from the kernel skill and the sparse property, the relevance vector machine (RVM) could acquire a sparse solution, with an equivalent generalization ability compared with the support vector machine. The sparse property requires much less time in the prediction, making RVM potential in classifying the large-scale hyperspectral image. However, RVM is not widespread influenced by its slow training procedure. To solve the problem, the classification of the hyperspectral image using RVM is accelerated by the parallel computing technique in this paper. The parallelization is revealed from the aspects of the multiclass strategy, the ensemble of multiple weak classifiers, and the matrix operations. The parallel RVMs are implemented using the C language plus the parallel functions of the linear algebra packages and the message passing interface library. The proposed methods are evaluated by the AVIRIS Indian Pines data set on the Beowulf cluster and the multicore platforms. It shows that the parallel RVMs accelerate the training procedure obviously.</description><subject>Classification</subject><subject>Computation</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Hyperspectral imaging</subject><subject>Image acquisition</subject><subject>Image classification</subject><subject>Linear algebra</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Message passing</subject><subject>Parallel processing</subject><subject>Remote sensing</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>Training</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0Utv1DAQAOAIgUQpnLijSFwQKNTjV5xjWQGtVKBCgLhFs864dZVNUjtL1X_PpEHiceFij-3Po_G4KJ6CeA1gzJEUII-kkU3d3CsOwFhVGdD1fY6F1BVI9f1h8SjnKyEkGHAHRTz2nnpKOMfhovzM4Q8cPFXfyM9jqj6gv4wDVW8wU1duesw5huhZj0M5hvLkdqKUJ8YJ-_J0hxdU3sT5sjxH3uipLzfjbtovyR8XDwL2mZ78mg-Lr-_eftmcVGef3p9ujs8q1FbMldaiAy0tym3jXdB2q0CQF6EzQdpaiq4DGxoeoAbjXAPOdNZukcBJH5Q6LF6seac0Xu8pz-0uZn5jjwON-9yCUKDASu2YPv-HXo37NHB1rMBpUTuoWb1alU9jzolCO6W4w3TLqF3a3i5tb9e2s365au5bhzfxP_jZiokJBfwDC9BaM_i4AowpzvF3feecxgJAzT95lxLuplooyXeF-nuxHOrlTeonXNqfkA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Dong, Chao</creator><creator>Tian, Lianfang</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120101</creationdate><title>Accelerating Relevance-Vector-Machine-Based Classification of Hyperspectral Image with Parallel Computing</title><author>Dong, Chao ; Tian, Lianfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-440d1426a2b9c8f46b310ec0fd5f26720dd16f9d161715889185d66bae182cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classification</topic><topic>Computation</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Hyperspectral imaging</topic><topic>Image acquisition</topic><topic>Image classification</topic><topic>Linear algebra</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Message passing</topic><topic>Parallel processing</topic><topic>Remote sensing</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Tian, Lianfang</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical Problems in Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Chao</au><au>Tian, Lianfang</au><au>Chou, Jyh Horng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating Relevance-Vector-Machine-Based Classification of Hyperspectral Image with Parallel Computing</atitle><jtitle>Mathematical Problems in Engineering</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>12</spage><epage>24-101</epage><pages>12-24-101</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Benefiting from the kernel skill and the sparse property, the relevance vector machine (RVM) could acquire a sparse solution, with an equivalent generalization ability compared with the support vector machine. The sparse property requires much less time in the prediction, making RVM potential in classifying the large-scale hyperspectral image. However, RVM is not widespread influenced by its slow training procedure. To solve the problem, the classification of the hyperspectral image using RVM is accelerated by the parallel computing technique in this paper. The parallelization is revealed from the aspects of the multiclass strategy, the ensemble of multiple weak classifiers, and the matrix operations. The parallel RVMs are implemented using the C language plus the parallel functions of the linear algebra packages and the message passing interface library. The proposed methods are evaluated by the AVIRIS Indian Pines data set on the Beowulf cluster and the multicore platforms. It shows that the parallel RVMs accelerate the training procedure obviously.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2012/252979</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical Problems in Engineering, 2012-01, Vol.2012 (2012), p.12-24-101 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031316248 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Classification Computation Efficiency Engineering Hyperspectral imaging Image acquisition Image classification Linear algebra Machine learning Mathematical analysis Mathematical models Message passing Parallel processing Remote sensing Studies Support vector machines Training |
title | Accelerating Relevance-Vector-Machine-Based Classification of Hyperspectral Image with Parallel Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20Relevance-Vector-Machine-Based%20Classification%20of%20Hyperspectral%20Image%20with%20Parallel%20Computing&rft.jtitle=Mathematical%20Problems%20in%20Engineering&rft.au=Dong,%20Chao&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=12&rft.epage=24-101&rft.pages=12-24-101&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2012/252979&rft_dat=%3Cproquest_cross%3E2677455831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1018407817&rft_id=info:pmid/&rft_airiti_id=P20161117002_201212_201703210003_201703210003_12_24_101&rfr_iscdi=true |