Accelerating Relevance-Vector-Machine-Based Classification of Hyperspectral Image with Parallel Computing

Benefiting from the kernel skill and the sparse property, the relevance vector machine (RVM) could acquire a sparse solution, with an equivalent generalization ability compared with the support vector machine. The sparse property requires much less time in the prediction, making RVM potential in cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Problems in Engineering 2012-01, Vol.2012 (2012), p.12-24-101
Hauptverfasser: Dong, Chao, Tian, Lianfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24-101
container_issue 2012
container_start_page 12
container_title Mathematical Problems in Engineering
container_volume 2012
creator Dong, Chao
Tian, Lianfang
description Benefiting from the kernel skill and the sparse property, the relevance vector machine (RVM) could acquire a sparse solution, with an equivalent generalization ability compared with the support vector machine. The sparse property requires much less time in the prediction, making RVM potential in classifying the large-scale hyperspectral image. However, RVM is not widespread influenced by its slow training procedure. To solve the problem, the classification of the hyperspectral image using RVM is accelerated by the parallel computing technique in this paper. The parallelization is revealed from the aspects of the multiclass strategy, the ensemble of multiple weak classifiers, and the matrix operations. The parallel RVMs are implemented using the C language plus the parallel functions of the linear algebra packages and the message passing interface library. The proposed methods are evaluated by the AVIRIS Indian Pines data set on the Beowulf cluster and the multicore platforms. It shows that the parallel RVMs accelerate the training procedure obviously.
doi_str_mv 10.1155/2012/252979
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031316248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20161117002_201212_201703210003_201703210003_12_24_101</airiti_id><sourcerecordid>2677455831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-440d1426a2b9c8f46b310ec0fd5f26720dd16f9d161715889185d66bae182cf33</originalsourceid><addsrcrecordid>eNqF0Utv1DAQAOAIgUQpnLijSFwQKNTjV5xjWQGtVKBCgLhFs864dZVNUjtL1X_PpEHiceFij-3Po_G4KJ6CeA1gzJEUII-kkU3d3CsOwFhVGdD1fY6F1BVI9f1h8SjnKyEkGHAHRTz2nnpKOMfhovzM4Q8cPFXfyM9jqj6gv4wDVW8wU1duesw5huhZj0M5hvLkdqKUJ8YJ-_J0hxdU3sT5sjxH3uipLzfjbtovyR8XDwL2mZ78mg-Lr-_eftmcVGef3p9ujs8q1FbMldaiAy0tym3jXdB2q0CQF6EzQdpaiq4DGxoeoAbjXAPOdNZukcBJH5Q6LF6seac0Xu8pz-0uZn5jjwON-9yCUKDASu2YPv-HXo37NHB1rMBpUTuoWb1alU9jzolCO6W4w3TLqF3a3i5tb9e2s365au5bhzfxP_jZiokJBfwDC9BaM_i4AowpzvF3feecxgJAzT95lxLuplooyXeF-nuxHOrlTeonXNqfkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018407817</pqid></control><display><type>article</type><title>Accelerating Relevance-Vector-Machine-Based Classification of Hyperspectral Image with Parallel Computing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Dong, Chao ; Tian, Lianfang</creator><contributor>Chou, Jyh Horng</contributor><creatorcontrib>Dong, Chao ; Tian, Lianfang ; Chou, Jyh Horng</creatorcontrib><description>Benefiting from the kernel skill and the sparse property, the relevance vector machine (RVM) could acquire a sparse solution, with an equivalent generalization ability compared with the support vector machine. The sparse property requires much less time in the prediction, making RVM potential in classifying the large-scale hyperspectral image. However, RVM is not widespread influenced by its slow training procedure. To solve the problem, the classification of the hyperspectral image using RVM is accelerated by the parallel computing technique in this paper. The parallelization is revealed from the aspects of the multiclass strategy, the ensemble of multiple weak classifiers, and the matrix operations. The parallel RVMs are implemented using the C language plus the parallel functions of the linear algebra packages and the message passing interface library. The proposed methods are evaluated by the AVIRIS Indian Pines data set on the Beowulf cluster and the multicore platforms. It shows that the parallel RVMs accelerate the training procedure obviously.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2012/252979</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Classification ; Computation ; Efficiency ; Engineering ; Hyperspectral imaging ; Image acquisition ; Image classification ; Linear algebra ; Machine learning ; Mathematical analysis ; Mathematical models ; Message passing ; Parallel processing ; Remote sensing ; Studies ; Support vector machines ; Training</subject><ispartof>Mathematical Problems in Engineering, 2012-01, Vol.2012 (2012), p.12-24-101</ispartof><rights>Copyright © 2012 Chao Dong and Lianfang Tian.</rights><rights>Copyright © 2012 Chao Dong and Lianfang Tian. Chao Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-440d1426a2b9c8f46b310ec0fd5f26720dd16f9d161715889185d66bae182cf33</citedby><cites>FETCH-LOGICAL-a460t-440d1426a2b9c8f46b310ec0fd5f26720dd16f9d161715889185d66bae182cf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Chou, Jyh Horng</contributor><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Tian, Lianfang</creatorcontrib><title>Accelerating Relevance-Vector-Machine-Based Classification of Hyperspectral Image with Parallel Computing</title><title>Mathematical Problems in Engineering</title><description>Benefiting from the kernel skill and the sparse property, the relevance vector machine (RVM) could acquire a sparse solution, with an equivalent generalization ability compared with the support vector machine. The sparse property requires much less time in the prediction, making RVM potential in classifying the large-scale hyperspectral image. However, RVM is not widespread influenced by its slow training procedure. To solve the problem, the classification of the hyperspectral image using RVM is accelerated by the parallel computing technique in this paper. The parallelization is revealed from the aspects of the multiclass strategy, the ensemble of multiple weak classifiers, and the matrix operations. The parallel RVMs are implemented using the C language plus the parallel functions of the linear algebra packages and the message passing interface library. The proposed methods are evaluated by the AVIRIS Indian Pines data set on the Beowulf cluster and the multicore platforms. It shows that the parallel RVMs accelerate the training procedure obviously.</description><subject>Classification</subject><subject>Computation</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Hyperspectral imaging</subject><subject>Image acquisition</subject><subject>Image classification</subject><subject>Linear algebra</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Message passing</subject><subject>Parallel processing</subject><subject>Remote sensing</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>Training</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0Utv1DAQAOAIgUQpnLijSFwQKNTjV5xjWQGtVKBCgLhFs864dZVNUjtL1X_PpEHiceFij-3Po_G4KJ6CeA1gzJEUII-kkU3d3CsOwFhVGdD1fY6F1BVI9f1h8SjnKyEkGHAHRTz2nnpKOMfhovzM4Q8cPFXfyM9jqj6gv4wDVW8wU1duesw5huhZj0M5hvLkdqKUJ8YJ-_J0hxdU3sT5sjxH3uipLzfjbtovyR8XDwL2mZ78mg-Lr-_eftmcVGef3p9ujs8q1FbMldaiAy0tym3jXdB2q0CQF6EzQdpaiq4DGxoeoAbjXAPOdNZukcBJH5Q6LF6seac0Xu8pz-0uZn5jjwON-9yCUKDASu2YPv-HXo37NHB1rMBpUTuoWb1alU9jzolCO6W4w3TLqF3a3i5tb9e2s365au5bhzfxP_jZiokJBfwDC9BaM_i4AowpzvF3feecxgJAzT95lxLuplooyXeF-nuxHOrlTeonXNqfkA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Dong, Chao</creator><creator>Tian, Lianfang</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120101</creationdate><title>Accelerating Relevance-Vector-Machine-Based Classification of Hyperspectral Image with Parallel Computing</title><author>Dong, Chao ; Tian, Lianfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-440d1426a2b9c8f46b310ec0fd5f26720dd16f9d161715889185d66bae182cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classification</topic><topic>Computation</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Hyperspectral imaging</topic><topic>Image acquisition</topic><topic>Image classification</topic><topic>Linear algebra</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Message passing</topic><topic>Parallel processing</topic><topic>Remote sensing</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Tian, Lianfang</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical Problems in Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Chao</au><au>Tian, Lianfang</au><au>Chou, Jyh Horng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating Relevance-Vector-Machine-Based Classification of Hyperspectral Image with Parallel Computing</atitle><jtitle>Mathematical Problems in Engineering</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>12</spage><epage>24-101</epage><pages>12-24-101</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Benefiting from the kernel skill and the sparse property, the relevance vector machine (RVM) could acquire a sparse solution, with an equivalent generalization ability compared with the support vector machine. The sparse property requires much less time in the prediction, making RVM potential in classifying the large-scale hyperspectral image. However, RVM is not widespread influenced by its slow training procedure. To solve the problem, the classification of the hyperspectral image using RVM is accelerated by the parallel computing technique in this paper. The parallelization is revealed from the aspects of the multiclass strategy, the ensemble of multiple weak classifiers, and the matrix operations. The parallel RVMs are implemented using the C language plus the parallel functions of the linear algebra packages and the message passing interface library. The proposed methods are evaluated by the AVIRIS Indian Pines data set on the Beowulf cluster and the multicore platforms. It shows that the parallel RVMs accelerate the training procedure obviously.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2012/252979</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical Problems in Engineering, 2012-01, Vol.2012 (2012), p.12-24-101
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1031316248
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Classification
Computation
Efficiency
Engineering
Hyperspectral imaging
Image acquisition
Image classification
Linear algebra
Machine learning
Mathematical analysis
Mathematical models
Message passing
Parallel processing
Remote sensing
Studies
Support vector machines
Training
title Accelerating Relevance-Vector-Machine-Based Classification of Hyperspectral Image with Parallel Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20Relevance-Vector-Machine-Based%20Classification%20of%20Hyperspectral%20Image%20with%20Parallel%20Computing&rft.jtitle=Mathematical%20Problems%20in%20Engineering&rft.au=Dong,%20Chao&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=12&rft.epage=24-101&rft.pages=12-24-101&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2012/252979&rft_dat=%3Cproquest_cross%3E2677455831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1018407817&rft_id=info:pmid/&rft_airiti_id=P20161117002_201212_201703210003_201703210003_12_24_101&rfr_iscdi=true