Photoluminescence and Raman Spectroscopy of Polycrystalline ZnO Nanofibers Deposited by Electrospinning
The technique of electrospinning offers the advantage of growing nanowires in bulk quantities in comparison with traditional methods. We report optical studies of polycrystalline zinc oxide (ZnO) nanofibers (∼100 nm thick and 5 μ m long) deposited by electrospinning. Photoluminescence from the nano...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2011-09, Vol.40 (9), p.2015-2019 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2019 |
---|---|
container_issue | 9 |
container_start_page | 2015 |
container_title | Journal of electronic materials |
container_volume | 40 |
creator | Sen, Banani Stroscio, Michael Dutta, Mitra |
description | The technique of electrospinning offers the advantage of growing nanowires in bulk quantities in comparison with traditional methods. We report optical studies of polycrystalline zinc oxide (ZnO) nanofibers (∼100 nm thick and 5
μ
m long) deposited by electrospinning. Photoluminescence from the nanofibers shows a near-ultraviolet (near-UV) peak corresponding to near-band-edge emission and a strong broad peak in the visible region from oxygen antisite and interstitial defects. Temperature-dependent photoluminescence spectroscopy reveals that different carrier recombination mechanisms are dominant at low temperature. Our Raman spectroscopy results demonstrate that characterization of the quasimodes of longitudinal optical (LO) and transverse optical (TO) phonons present in an ensemble of polycrystalline nanofibers tilted at various angles in addition to the dominant
E
2
(high) mode provides a promising technique for assessing the quality of such randomly oriented nanowires. |
doi_str_mv | 10.1007/s11664-011-1688-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031313537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667473671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-b6165bf0c0e66949963af7b5b20a6a7d8ed709c527dba2c6ee3232164def0df53</originalsourceid><addsrcrecordid>eNp1kEtr3TAQhUVpIbdpf0B2ghDoxo1GsmR5GdI8CqEJfUDpxsjy6NZBV3Il34X_fXVxCKFQZjGL-c6ZmUPICbCPwFhzngGUqisGUIHSutKvyAZkLSrQ6udrsmFCQSW5kEfkbc6PjIEEDRuyffgd5-j3uzFgthgsUhMG-tXsTKDfJrRzitnGaaHR0YfoF5uWPBvvC09_hXv6xYToxh5Tpp9winmccaD9Qq_8qp3GEMawfUfeOOMzvn_qx-TH9dX3y9vq7v7m8-XFXWVrzueqV6Bk75hlqFRbt60SxjW97DkzyjSDxqFhrZW8GXrDrUIUXHBQ9YCODU6KY_Jh9Z1S_LPHPHe7sfzlvQkY97kDJqCUFE1BT_9BH-M-hXJdoaCsaEXDCgUrZcszOaHrpjTuTFoK1B2i79bouxJ9d4i-00Vz9uRssjXeJRPsmJ-FvJZa6frA8ZXLZRS2mF5e8D_zv4WPlMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015279370</pqid></control><display><type>article</type><title>Photoluminescence and Raman Spectroscopy of Polycrystalline ZnO Nanofibers Deposited by Electrospinning</title><source>Springer Nature - Complete Springer Journals</source><creator>Sen, Banani ; Stroscio, Michael ; Dutta, Mitra</creator><creatorcontrib>Sen, Banani ; Stroscio, Michael ; Dutta, Mitra</creatorcontrib><description>The technique of electrospinning offers the advantage of growing nanowires in bulk quantities in comparison with traditional methods. We report optical studies of polycrystalline zinc oxide (ZnO) nanofibers (∼100 nm thick and 5
μ
m long) deposited by electrospinning. Photoluminescence from the nanofibers shows a near-ultraviolet (near-UV) peak corresponding to near-band-edge emission and a strong broad peak in the visible region from oxygen antisite and interstitial defects. Temperature-dependent photoluminescence spectroscopy reveals that different carrier recombination mechanisms are dominant at low temperature. Our Raman spectroscopy results demonstrate that characterization of the quasimodes of longitudinal optical (LO) and transverse optical (TO) phonons present in an ensemble of polycrystalline nanofibers tilted at various angles in addition to the dominant
E
2
(high) mode provides a promising technique for assessing the quality of such randomly oriented nanowires.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-011-1688-8</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Carrier recombination ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Electrical engineering ; Electronics and Microelectronics ; Electrospinning ; Exact sciences and technology ; Instrumentation ; Materials Science ; Methods of nanofabrication ; Nanocrystals and nanoparticles ; Nanofibers ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanowires ; Optical and Electronic Materials ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Photoluminescence ; Physics ; Quantum wires ; Raman spectroscopy ; Solid State Physics ; Spectrum analysis ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of electronic materials, 2011-09, Vol.40 (9), p.2015-2019</ispartof><rights>TMS 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-b6165bf0c0e66949963af7b5b20a6a7d8ed709c527dba2c6ee3232164def0df53</citedby><cites>FETCH-LOGICAL-c422t-b6165bf0c0e66949963af7b5b20a6a7d8ed709c527dba2c6ee3232164def0df53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-011-1688-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-011-1688-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24586848$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sen, Banani</creatorcontrib><creatorcontrib>Stroscio, Michael</creatorcontrib><creatorcontrib>Dutta, Mitra</creatorcontrib><title>Photoluminescence and Raman Spectroscopy of Polycrystalline ZnO Nanofibers Deposited by Electrospinning</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The technique of electrospinning offers the advantage of growing nanowires in bulk quantities in comparison with traditional methods. We report optical studies of polycrystalline zinc oxide (ZnO) nanofibers (∼100 nm thick and 5
μ
m long) deposited by electrospinning. Photoluminescence from the nanofibers shows a near-ultraviolet (near-UV) peak corresponding to near-band-edge emission and a strong broad peak in the visible region from oxygen antisite and interstitial defects. Temperature-dependent photoluminescence spectroscopy reveals that different carrier recombination mechanisms are dominant at low temperature. Our Raman spectroscopy results demonstrate that characterization of the quasimodes of longitudinal optical (LO) and transverse optical (TO) phonons present in an ensemble of polycrystalline nanofibers tilted at various angles in addition to the dominant
E
2
(high) mode provides a promising technique for assessing the quality of such randomly oriented nanowires.</description><subject>Carrier recombination</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Electrical engineering</subject><subject>Electronics and Microelectronics</subject><subject>Electrospinning</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystals and nanoparticles</subject><subject>Nanofibers</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Raman spectroscopy</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtr3TAQhUVpIbdpf0B2ghDoxo1GsmR5GdI8CqEJfUDpxsjy6NZBV3Il34X_fXVxCKFQZjGL-c6ZmUPICbCPwFhzngGUqisGUIHSutKvyAZkLSrQ6udrsmFCQSW5kEfkbc6PjIEEDRuyffgd5-j3uzFgthgsUhMG-tXsTKDfJrRzitnGaaHR0YfoF5uWPBvvC09_hXv6xYToxh5Tpp9winmccaD9Qq_8qp3GEMawfUfeOOMzvn_qx-TH9dX3y9vq7v7m8-XFXWVrzueqV6Bk75hlqFRbt60SxjW97DkzyjSDxqFhrZW8GXrDrUIUXHBQ9YCODU6KY_Jh9Z1S_LPHPHe7sfzlvQkY97kDJqCUFE1BT_9BH-M-hXJdoaCsaEXDCgUrZcszOaHrpjTuTFoK1B2i79bouxJ9d4i-00Vz9uRssjXeJRPsmJ-FvJZa6frA8ZXLZRS2mF5e8D_zv4WPlMo</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Sen, Banani</creator><creator>Stroscio, Michael</creator><creator>Dutta, Mitra</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110901</creationdate><title>Photoluminescence and Raman Spectroscopy of Polycrystalline ZnO Nanofibers Deposited by Electrospinning</title><author>Sen, Banani ; Stroscio, Michael ; Dutta, Mitra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-b6165bf0c0e66949963af7b5b20a6a7d8ed709c527dba2c6ee3232164def0df53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Carrier recombination</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Electrical engineering</topic><topic>Electronics and Microelectronics</topic><topic>Electrospinning</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystals and nanoparticles</topic><topic>Nanofibers</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Raman spectroscopy</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sen, Banani</creatorcontrib><creatorcontrib>Stroscio, Michael</creatorcontrib><creatorcontrib>Dutta, Mitra</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sen, Banani</au><au>Stroscio, Michael</au><au>Dutta, Mitra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoluminescence and Raman Spectroscopy of Polycrystalline ZnO Nanofibers Deposited by Electrospinning</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>40</volume><issue>9</issue><spage>2015</spage><epage>2019</epage><pages>2015-2019</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>The technique of electrospinning offers the advantage of growing nanowires in bulk quantities in comparison with traditional methods. We report optical studies of polycrystalline zinc oxide (ZnO) nanofibers (∼100 nm thick and 5
μ
m long) deposited by electrospinning. Photoluminescence from the nanofibers shows a near-ultraviolet (near-UV) peak corresponding to near-band-edge emission and a strong broad peak in the visible region from oxygen antisite and interstitial defects. Temperature-dependent photoluminescence spectroscopy reveals that different carrier recombination mechanisms are dominant at low temperature. Our Raman spectroscopy results demonstrate that characterization of the quasimodes of longitudinal optical (LO) and transverse optical (TO) phonons present in an ensemble of polycrystalline nanofibers tilted at various angles in addition to the dominant
E
2
(high) mode provides a promising technique for assessing the quality of such randomly oriented nanowires.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-011-1688-8</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2011-09, Vol.40 (9), p.2015-2019 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_1031313537 |
source | Springer Nature - Complete Springer Journals |
subjects | Carrier recombination Characterization and Evaluation of Materials Chemistry and Materials Science Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Deposition Electrical engineering Electronics and Microelectronics Electrospinning Exact sciences and technology Instrumentation Materials Science Methods of nanofabrication Nanocrystals and nanoparticles Nanofibers Nanomaterials Nanoscale materials and structures: fabrication and characterization Nanowires Optical and Electronic Materials Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures Photoluminescence Physics Quantum wires Raman spectroscopy Solid State Physics Spectrum analysis Zinc oxide Zinc oxides |
title | Photoluminescence and Raman Spectroscopy of Polycrystalline ZnO Nanofibers Deposited by Electrospinning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoluminescence%20and%20Raman%20Spectroscopy%20of%20Polycrystalline%20ZnO%20Nanofibers%20Deposited%20by%20Electrospinning&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Sen,%20Banani&rft.date=2011-09-01&rft.volume=40&rft.issue=9&rft.spage=2015&rft.epage=2019&rft.pages=2015-2019&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-011-1688-8&rft_dat=%3Cproquest_cross%3E2667473671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015279370&rft_id=info:pmid/&rfr_iscdi=true |