Feature-Based Sparse Representation for Image Similarity Assessment

Assessment of image similarity is fundamentally important to numerous multimedia applications. The goal of similarity assessment is to automatically assess the similarities among images in a perceptually consistent manner. In this paper, we interpret the image similarity assessment problem as an inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2011-10, Vol.13 (5), p.1019-1030
Hauptverfasser: KANG, Li-Wei, HSU, Chao-Yung, CHEN, Hung-Wei, LU, Chun-Shien, LIN, Chih-Yang, PEI, Soo-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1030
container_issue 5
container_start_page 1019
container_title IEEE transactions on multimedia
container_volume 13
creator KANG, Li-Wei
HSU, Chao-Yung
CHEN, Hung-Wei
LU, Chun-Shien
LIN, Chih-Yang
PEI, Soo-Chang
description Assessment of image similarity is fundamentally important to numerous multimedia applications. The goal of similarity assessment is to automatically assess the similarities among images in a perceptually consistent manner. In this paper, we interpret the image similarity assessment problem as an information fidelity problem. More specifically, we propose a feature-based approach to quantify the information that is present in a reference image and how much of this information can be extracted from a test image to assess the similarity between the two images. Here, we extract the feature points and their descriptors from an image, followed by learning the dictionary/basis for the descriptors in order to interpret the information present in this image. Then, we formulate the problem of the image similarity assessment in terms of sparse representation. To evaluate the applicability of the proposed feature-based sparse representation for image similarity assessment (FSRISA) technique, we apply FSRISA to three popular applications, namely, image copy detection, retrieval, and recognition by properly formulating them to sparse representation problems. Promising results have been obtained through simulations conducted on several public datasets, including the Stirmark benchmark, Corel-1000, COIL-20, COIL-100, and Caltech-101 datasets.
doi_str_mv 10.1109/TMM.2011.2159197
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031307439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5872049</ieee_id><sourcerecordid>2456647021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-b901426ae7b391d1dcd55c4f333584074e9adc8d988aa4a5d729110809308a23</originalsourceid><addsrcrecordid>eNpdkMtLxEAMxoso-LwLXoogeOmaeXVmjrr4AhfB3XuJbSqVvpx0D_vfO8suHjwlkN_3JfmS5FLATAjwd6vFYiZBiJkUxgtvD5IT4bXIAKw9jL2RkHkp4Dg5Zf4GENqAPUnmT4TTOlD2gExVuhwxMKUfNAZi6iecmqFP6yGkrx1-UbpsuqbF0Eyb9J6ZmLsInSdHNbZMF_t6lqyeHlfzl-zt_fl1fv-WlcqbKfv0canMkeyn8qISVVkZU-paKWWcBqvJY1W6yjuHqNFUVvr4mgOvwKFUZ8ntznYMw8-aeCq6hktqW-xpWHMhQAkVbZSP6PU_9HtYhz4eVzgPyuVGQYRgB5VhYA5UF2NoOgyb6FRsMy1ipsU202KfaZTc7H2RS2zrgH3Z8J9OapNb7fPIXe24hoj-xsZZCdqrXyJEfYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>890386530</pqid></control><display><type>article</type><title>Feature-Based Sparse Representation for Image Similarity Assessment</title><source>IEEE Electronic Library (IEL)</source><creator>KANG, Li-Wei ; HSU, Chao-Yung ; CHEN, Hung-Wei ; LU, Chun-Shien ; LIN, Chih-Yang ; PEI, Soo-Chang</creator><creatorcontrib>KANG, Li-Wei ; HSU, Chao-Yung ; CHEN, Hung-Wei ; LU, Chun-Shien ; LIN, Chih-Yang ; PEI, Soo-Chang</creatorcontrib><description>Assessment of image similarity is fundamentally important to numerous multimedia applications. The goal of similarity assessment is to automatically assess the similarities among images in a perceptually consistent manner. In this paper, we interpret the image similarity assessment problem as an information fidelity problem. More specifically, we propose a feature-based approach to quantify the information that is present in a reference image and how much of this information can be extracted from a test image to assess the similarity between the two images. Here, we extract the feature points and their descriptors from an image, followed by learning the dictionary/basis for the descriptors in order to interpret the information present in this image. Then, we formulate the problem of the image similarity assessment in terms of sparse representation. To evaluate the applicability of the proposed feature-based sparse representation for image similarity assessment (FSRISA) technique, we apply FSRISA to three popular applications, namely, image copy detection, retrieval, and recognition by properly formulating them to sparse representation problems. Promising results have been obtained through simulations conducted on several public datasets, including the Stirmark benchmark, Corel-1000, COIL-20, COIL-100, and Caltech-101 datasets.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2011.2159197</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Assessments ; Coiling ; Computational complexity ; Computer science; control theory; systems ; Data mining ; Detection, estimation, filtering, equalization, prediction ; Dictionaries ; Encoding ; Exact sciences and technology ; Feature detection ; Feature extraction ; Image coding ; image copy detection ; image recognition ; Image reconstruction ; image retrieval ; image similarity assessment ; Information, signal and communications theory ; Learning ; Multimedia ; Pattern recognition. Digital image processing. Computational geometry ; Representations ; Signal and communications theory ; Signal, noise ; Similarity ; sparse representation ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on multimedia, 2011-10, Vol.13 (5), p.1019-1030</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-b901426ae7b391d1dcd55c4f333584074e9adc8d988aa4a5d729110809308a23</citedby><cites>FETCH-LOGICAL-c395t-b901426ae7b391d1dcd55c4f333584074e9adc8d988aa4a5d729110809308a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5872049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5872049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24567496$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KANG, Li-Wei</creatorcontrib><creatorcontrib>HSU, Chao-Yung</creatorcontrib><creatorcontrib>CHEN, Hung-Wei</creatorcontrib><creatorcontrib>LU, Chun-Shien</creatorcontrib><creatorcontrib>LIN, Chih-Yang</creatorcontrib><creatorcontrib>PEI, Soo-Chang</creatorcontrib><title>Feature-Based Sparse Representation for Image Similarity Assessment</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Assessment of image similarity is fundamentally important to numerous multimedia applications. The goal of similarity assessment is to automatically assess the similarities among images in a perceptually consistent manner. In this paper, we interpret the image similarity assessment problem as an information fidelity problem. More specifically, we propose a feature-based approach to quantify the information that is present in a reference image and how much of this information can be extracted from a test image to assess the similarity between the two images. Here, we extract the feature points and their descriptors from an image, followed by learning the dictionary/basis for the descriptors in order to interpret the information present in this image. Then, we formulate the problem of the image similarity assessment in terms of sparse representation. To evaluate the applicability of the proposed feature-based sparse representation for image similarity assessment (FSRISA) technique, we apply FSRISA to three popular applications, namely, image copy detection, retrieval, and recognition by properly formulating them to sparse representation problems. Promising results have been obtained through simulations conducted on several public datasets, including the Stirmark benchmark, Corel-1000, COIL-20, COIL-100, and Caltech-101 datasets.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Assessments</subject><subject>Coiling</subject><subject>Computational complexity</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Dictionaries</subject><subject>Encoding</subject><subject>Exact sciences and technology</subject><subject>Feature detection</subject><subject>Feature extraction</subject><subject>Image coding</subject><subject>image copy detection</subject><subject>image recognition</subject><subject>Image reconstruction</subject><subject>image retrieval</subject><subject>image similarity assessment</subject><subject>Information, signal and communications theory</subject><subject>Learning</subject><subject>Multimedia</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Representations</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Similarity</subject><subject>sparse representation</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLxEAMxoso-LwLXoogeOmaeXVmjrr4AhfB3XuJbSqVvpx0D_vfO8suHjwlkN_3JfmS5FLATAjwd6vFYiZBiJkUxgtvD5IT4bXIAKw9jL2RkHkp4Dg5Zf4GENqAPUnmT4TTOlD2gExVuhwxMKUfNAZi6iecmqFP6yGkrx1-UbpsuqbF0Eyb9J6ZmLsInSdHNbZMF_t6lqyeHlfzl-zt_fl1fv-WlcqbKfv0canMkeyn8qISVVkZU-paKWWcBqvJY1W6yjuHqNFUVvr4mgOvwKFUZ8ntznYMw8-aeCq6hktqW-xpWHMhQAkVbZSP6PU_9HtYhz4eVzgPyuVGQYRgB5VhYA5UF2NoOgyb6FRsMy1ipsU202KfaZTc7H2RS2zrgH3Z8J9OapNb7fPIXe24hoj-xsZZCdqrXyJEfYo</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>KANG, Li-Wei</creator><creator>HSU, Chao-Yung</creator><creator>CHEN, Hung-Wei</creator><creator>LU, Chun-Shien</creator><creator>LIN, Chih-Yang</creator><creator>PEI, Soo-Chang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111001</creationdate><title>Feature-Based Sparse Representation for Image Similarity Assessment</title><author>KANG, Li-Wei ; HSU, Chao-Yung ; CHEN, Hung-Wei ; LU, Chun-Shien ; LIN, Chih-Yang ; PEI, Soo-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-b901426ae7b391d1dcd55c4f333584074e9adc8d988aa4a5d729110809308a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Assessments</topic><topic>Coiling</topic><topic>Computational complexity</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Dictionaries</topic><topic>Encoding</topic><topic>Exact sciences and technology</topic><topic>Feature detection</topic><topic>Feature extraction</topic><topic>Image coding</topic><topic>image copy detection</topic><topic>image recognition</topic><topic>Image reconstruction</topic><topic>image retrieval</topic><topic>image similarity assessment</topic><topic>Information, signal and communications theory</topic><topic>Learning</topic><topic>Multimedia</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Representations</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Similarity</topic><topic>sparse representation</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KANG, Li-Wei</creatorcontrib><creatorcontrib>HSU, Chao-Yung</creatorcontrib><creatorcontrib>CHEN, Hung-Wei</creatorcontrib><creatorcontrib>LU, Chun-Shien</creatorcontrib><creatorcontrib>LIN, Chih-Yang</creatorcontrib><creatorcontrib>PEI, Soo-Chang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KANG, Li-Wei</au><au>HSU, Chao-Yung</au><au>CHEN, Hung-Wei</au><au>LU, Chun-Shien</au><au>LIN, Chih-Yang</au><au>PEI, Soo-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature-Based Sparse Representation for Image Similarity Assessment</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>13</volume><issue>5</issue><spage>1019</spage><epage>1030</epage><pages>1019-1030</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Assessment of image similarity is fundamentally important to numerous multimedia applications. The goal of similarity assessment is to automatically assess the similarities among images in a perceptually consistent manner. In this paper, we interpret the image similarity assessment problem as an information fidelity problem. More specifically, we propose a feature-based approach to quantify the information that is present in a reference image and how much of this information can be extracted from a test image to assess the similarity between the two images. Here, we extract the feature points and their descriptors from an image, followed by learning the dictionary/basis for the descriptors in order to interpret the information present in this image. Then, we formulate the problem of the image similarity assessment in terms of sparse representation. To evaluate the applicability of the proposed feature-based sparse representation for image similarity assessment (FSRISA) technique, we apply FSRISA to three popular applications, namely, image copy detection, retrieval, and recognition by properly formulating them to sparse representation problems. Promising results have been obtained through simulations conducted on several public datasets, including the Stirmark benchmark, Corel-1000, COIL-20, COIL-100, and Caltech-101 datasets.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMM.2011.2159197</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2011-10, Vol.13 (5), p.1019-1030
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_miscellaneous_1031307439
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Assessments
Coiling
Computational complexity
Computer science
control theory
systems
Data mining
Detection, estimation, filtering, equalization, prediction
Dictionaries
Encoding
Exact sciences and technology
Feature detection
Feature extraction
Image coding
image copy detection
image recognition
Image reconstruction
image retrieval
image similarity assessment
Information, signal and communications theory
Learning
Multimedia
Pattern recognition. Digital image processing. Computational geometry
Representations
Signal and communications theory
Signal, noise
Similarity
sparse representation
Studies
Telecommunications and information theory
title Feature-Based Sparse Representation for Image Similarity Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature-Based%20Sparse%20Representation%20for%20Image%20Similarity%20Assessment&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=KANG,%20Li-Wei&rft.date=2011-10-01&rft.volume=13&rft.issue=5&rft.spage=1019&rft.epage=1030&rft.pages=1019-1030&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2011.2159197&rft_dat=%3Cproquest_RIE%3E2456647021%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=890386530&rft_id=info:pmid/&rft_ieee_id=5872049&rfr_iscdi=true