Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells
Proton-exchange membrane fuel cells have emerged as a promising emission free technology to fulfill the existing power requirements of the 21st century. Nafion® is the most widely accepted and commercialized membrane to date and possesses excellent electrochemical properties below 80°C, under highly...
Gespeichert in:
Veröffentlicht in: | Progress in polymer science 2012-06, Vol.37 (6), p.842-869 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 869 |
---|---|
container_issue | 6 |
container_start_page | 842 |
container_title | Progress in polymer science |
container_volume | 37 |
creator | Mishra, Ananta Kumar Bose, Saswata Kuila, Tapas Kim, Nam Hoon Lee, Joong Hee |
description | Proton-exchange membrane fuel cells have emerged as a promising emission free technology to fulfill the existing power requirements of the 21st century. Nafion® is the most widely accepted and commercialized membrane to date and possesses excellent electrochemical properties below 80°C, under highly humidified conditions. However, a decrease in the proton conductivity of Nafion® above 80°C and lower humidity along with high membrane cost has prompted the development of new membranes and techniques. Addition of inorganic fillers, especially silicate-based nanomaterials, to the polymer membrane was utilized to partially overcome the aforementioned limitations. This is because of the lower cost, easy availability, high hydrophilicity and higher thermal stability of the inorganic silicates. Addition of silicates to the polymer membrane has also improved the mechanical, thermal and barrier properties, along with water uptake of the composite membranes, resulting in superior performance at higher temperature compared to that of the virgin membrane. However, the degrees of dispersion and interaction between the organic polymer and inorganic silicates play vital roles in improving the key properties of the membranes. Hence, different techniques and solvent media were used to improve the degrees of nanofiller dispersion and the physico-chemical properties of the membranes. This review focuses mainly on the techniques of silicate-based nanocomposite fabrication and the resulting impact on the membrane properties. |
doi_str_mv | 10.1016/j.progpolymsci.2011.11.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031305306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079670011001274</els_id><sourcerecordid>1031305306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-aa7497b2c5cdd63e6988d83e2ec9ef8464f560fe52ad5afcf896d30ecbbbf7343</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouH78hyIIXlonTZu23mT9hAUP6sVLSNOJZEmbNekK--_Nfih7FAZC4Jl3Zh5CLihkFCi_nmcL7z4Xzq76oEyWA6VZLID8gExoXbGUctockglA1aS8AjgmJyHMAWhFy2pCPl6NNUqOmLYyYJdsotCngxyccv3CBTNi0mPfejlgSLTzv0yCFtXo42ePSPQSbaLQ2nBGjrS0Ac937yl5f7h_mz6ls5fH5-ntLFVFA2MqZVU0VZurUnUdZ8ibuu5qhjmqBnVd8EKXHDSWuexKqZWuG94xQNW2ra5YwU7J1TY3qvhaYhhFb8J6g7iOWwZBgVEGJQMe0ZstqrwLwaMWC2966VcREmuhYi72hYq1UBErCo3Nl7s5MihpdTxXmfCXkJcNZ3TD3W05jEd_G_QiJuGgsDM-ChOdM_8Z9wMO8pZV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031305306</pqid></control><display><type>article</type><title>Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Mishra, Ananta Kumar ; Bose, Saswata ; Kuila, Tapas ; Kim, Nam Hoon ; Lee, Joong Hee</creator><creatorcontrib>Mishra, Ananta Kumar ; Bose, Saswata ; Kuila, Tapas ; Kim, Nam Hoon ; Lee, Joong Hee</creatorcontrib><description>Proton-exchange membrane fuel cells have emerged as a promising emission free technology to fulfill the existing power requirements of the 21st century. Nafion® is the most widely accepted and commercialized membrane to date and possesses excellent electrochemical properties below 80°C, under highly humidified conditions. However, a decrease in the proton conductivity of Nafion® above 80°C and lower humidity along with high membrane cost has prompted the development of new membranes and techniques. Addition of inorganic fillers, especially silicate-based nanomaterials, to the polymer membrane was utilized to partially overcome the aforementioned limitations. This is because of the lower cost, easy availability, high hydrophilicity and higher thermal stability of the inorganic silicates. Addition of silicates to the polymer membrane has also improved the mechanical, thermal and barrier properties, along with water uptake of the composite membranes, resulting in superior performance at higher temperature compared to that of the virgin membrane. However, the degrees of dispersion and interaction between the organic polymer and inorganic silicates play vital roles in improving the key properties of the membranes. Hence, different techniques and solvent media were used to improve the degrees of nanofiller dispersion and the physico-chemical properties of the membranes. This review focuses mainly on the techniques of silicate-based nanocomposite fabrication and the resulting impact on the membrane properties.</description><identifier>ISSN: 0079-6700</identifier><identifier>EISSN: 1873-1619</identifier><identifier>DOI: 10.1016/j.progpolymsci.2011.11.002</identifier><identifier>CODEN: PRPSB8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Cell performance ; Dispersions ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; Fuel cells ; Membranes ; Nanocomposites ; Nanomaterials ; Nanostructure ; Polymer industry, paints, wood ; Polymeric membrane ; Proton conductivity ; Proton-exchange membrane fuel cell ; Silicate ; Silicates ; Solvents ; Technology of polymers ; Water retention</subject><ispartof>Progress in polymer science, 2012-06, Vol.37 (6), p.842-869</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-aa7497b2c5cdd63e6988d83e2ec9ef8464f560fe52ad5afcf896d30ecbbbf7343</citedby><cites>FETCH-LOGICAL-c490t-aa7497b2c5cdd63e6988d83e2ec9ef8464f560fe52ad5afcf896d30ecbbbf7343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.progpolymsci.2011.11.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25963102$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishra, Ananta Kumar</creatorcontrib><creatorcontrib>Bose, Saswata</creatorcontrib><creatorcontrib>Kuila, Tapas</creatorcontrib><creatorcontrib>Kim, Nam Hoon</creatorcontrib><creatorcontrib>Lee, Joong Hee</creatorcontrib><title>Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells</title><title>Progress in polymer science</title><description>Proton-exchange membrane fuel cells have emerged as a promising emission free technology to fulfill the existing power requirements of the 21st century. Nafion® is the most widely accepted and commercialized membrane to date and possesses excellent electrochemical properties below 80°C, under highly humidified conditions. However, a decrease in the proton conductivity of Nafion® above 80°C and lower humidity along with high membrane cost has prompted the development of new membranes and techniques. Addition of inorganic fillers, especially silicate-based nanomaterials, to the polymer membrane was utilized to partially overcome the aforementioned limitations. This is because of the lower cost, easy availability, high hydrophilicity and higher thermal stability of the inorganic silicates. Addition of silicates to the polymer membrane has also improved the mechanical, thermal and barrier properties, along with water uptake of the composite membranes, resulting in superior performance at higher temperature compared to that of the virgin membrane. However, the degrees of dispersion and interaction between the organic polymer and inorganic silicates play vital roles in improving the key properties of the membranes. Hence, different techniques and solvent media were used to improve the degrees of nanofiller dispersion and the physico-chemical properties of the membranes. This review focuses mainly on the techniques of silicate-based nanocomposite fabrication and the resulting impact on the membrane properties.</description><subject>Applied sciences</subject><subject>Cell performance</subject><subject>Dispersions</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>Fuel cells</subject><subject>Membranes</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Polymer industry, paints, wood</subject><subject>Polymeric membrane</subject><subject>Proton conductivity</subject><subject>Proton-exchange membrane fuel cell</subject><subject>Silicate</subject><subject>Silicates</subject><subject>Solvents</subject><subject>Technology of polymers</subject><subject>Water retention</subject><issn>0079-6700</issn><issn>1873-1619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouH78hyIIXlonTZu23mT9hAUP6sVLSNOJZEmbNekK--_Nfih7FAZC4Jl3Zh5CLihkFCi_nmcL7z4Xzq76oEyWA6VZLID8gExoXbGUctockglA1aS8AjgmJyHMAWhFy2pCPl6NNUqOmLYyYJdsotCngxyccv3CBTNi0mPfejlgSLTzv0yCFtXo42ePSPQSbaLQ2nBGjrS0Ac937yl5f7h_mz6ls5fH5-ntLFVFA2MqZVU0VZurUnUdZ8ibuu5qhjmqBnVd8EKXHDSWuexKqZWuG94xQNW2ra5YwU7J1TY3qvhaYhhFb8J6g7iOWwZBgVEGJQMe0ZstqrwLwaMWC2966VcREmuhYi72hYq1UBErCo3Nl7s5MihpdTxXmfCXkJcNZ3TD3W05jEd_G_QiJuGgsDM-ChOdM_8Z9wMO8pZV</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Mishra, Ananta Kumar</creator><creator>Bose, Saswata</creator><creator>Kuila, Tapas</creator><creator>Kim, Nam Hoon</creator><creator>Lee, Joong Hee</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120601</creationdate><title>Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells</title><author>Mishra, Ananta Kumar ; Bose, Saswata ; Kuila, Tapas ; Kim, Nam Hoon ; Lee, Joong Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-aa7497b2c5cdd63e6988d83e2ec9ef8464f560fe52ad5afcf896d30ecbbbf7343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Cell performance</topic><topic>Dispersions</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>Fuel cells</topic><topic>Membranes</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Polymer industry, paints, wood</topic><topic>Polymeric membrane</topic><topic>Proton conductivity</topic><topic>Proton-exchange membrane fuel cell</topic><topic>Silicate</topic><topic>Silicates</topic><topic>Solvents</topic><topic>Technology of polymers</topic><topic>Water retention</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Ananta Kumar</creatorcontrib><creatorcontrib>Bose, Saswata</creatorcontrib><creatorcontrib>Kuila, Tapas</creatorcontrib><creatorcontrib>Kim, Nam Hoon</creatorcontrib><creatorcontrib>Lee, Joong Hee</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Ananta Kumar</au><au>Bose, Saswata</au><au>Kuila, Tapas</au><au>Kim, Nam Hoon</au><au>Lee, Joong Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells</atitle><jtitle>Progress in polymer science</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>37</volume><issue>6</issue><spage>842</spage><epage>869</epage><pages>842-869</pages><issn>0079-6700</issn><eissn>1873-1619</eissn><coden>PRPSB8</coden><abstract>Proton-exchange membrane fuel cells have emerged as a promising emission free technology to fulfill the existing power requirements of the 21st century. Nafion® is the most widely accepted and commercialized membrane to date and possesses excellent electrochemical properties below 80°C, under highly humidified conditions. However, a decrease in the proton conductivity of Nafion® above 80°C and lower humidity along with high membrane cost has prompted the development of new membranes and techniques. Addition of inorganic fillers, especially silicate-based nanomaterials, to the polymer membrane was utilized to partially overcome the aforementioned limitations. This is because of the lower cost, easy availability, high hydrophilicity and higher thermal stability of the inorganic silicates. Addition of silicates to the polymer membrane has also improved the mechanical, thermal and barrier properties, along with water uptake of the composite membranes, resulting in superior performance at higher temperature compared to that of the virgin membrane. However, the degrees of dispersion and interaction between the organic polymer and inorganic silicates play vital roles in improving the key properties of the membranes. Hence, different techniques and solvent media were used to improve the degrees of nanofiller dispersion and the physico-chemical properties of the membranes. This review focuses mainly on the techniques of silicate-based nanocomposite fabrication and the resulting impact on the membrane properties.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.progpolymsci.2011.11.002</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6700 |
ispartof | Progress in polymer science, 2012-06, Vol.37 (6), p.842-869 |
issn | 0079-6700 1873-1619 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031305306 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Cell performance Dispersions Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Exchange resins and membranes Forms of application and semi-finished materials Fuel cells Membranes Nanocomposites Nanomaterials Nanostructure Polymer industry, paints, wood Polymeric membrane Proton conductivity Proton-exchange membrane fuel cell Silicate Silicates Solvents Technology of polymers Water retention |
title | Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicate-based%20polymer-nanocomposite%20membranes%20for%20polymer%20electrolyte%20membrane%20fuel%20cells&rft.jtitle=Progress%20in%20polymer%20science&rft.au=Mishra,%20Ananta%20Kumar&rft.date=2012-06-01&rft.volume=37&rft.issue=6&rft.spage=842&rft.epage=869&rft.pages=842-869&rft.issn=0079-6700&rft.eissn=1873-1619&rft.coden=PRPSB8&rft_id=info:doi/10.1016/j.progpolymsci.2011.11.002&rft_dat=%3Cproquest_cross%3E1031305306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031305306&rft_id=info:pmid/&rft_els_id=S0079670011001274&rfr_iscdi=true |