Improvement in Joint Reliability of SiC Power Devices by a Diffusion Barrier Between Au-Ge Solder and Cu/Ni(P)-Metalized Ceramic Substrates

The long-term joint reliability of SiC power devices bonded on a ceramic substrate metalized with copper (Cu) and electroless nickel-phosphorus [Ni(P)] using a gold-germanium (Au-Ge) eutectic solder was investigated at 330°C in air. Rapid growth of Ni-Ge intermetallic compounds (IMCs) at the solder/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2011-07, Vol.40 (7), p.1563-1571
Hauptverfasser: Lang, Fengqun, Yamaguchi, Hiroshi, Ohashi, Hiromichi, Sato, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1571
container_issue 7
container_start_page 1563
container_title Journal of electronic materials
container_volume 40
creator Lang, Fengqun
Yamaguchi, Hiroshi
Ohashi, Hiromichi
Sato, Hiroshi
description The long-term joint reliability of SiC power devices bonded on a ceramic substrate metalized with copper (Cu) and electroless nickel-phosphorus [Ni(P)] using a gold-germanium (Au-Ge) eutectic solder was investigated at 330°C in air. Rapid growth of Ni-Ge intermetallic compounds (IMCs) at the solder/Ni(P) interface and subsequent oxidation of the conductive Cu layer at the IMCs/Cu interface led to a dramatic decrease in bond strength and an increase in the electrical resistance of the joint. To improve the joint reliability, a 250-nm-thick tungsten (W) diffusion barrier (DB) was prepared on the surface of the substrate using a sputtering process. SiC Schottky barrier diode (SBD) power devices were then die-bonded to the W-DB-modified substrate with the Au-Ge eutectic solder using a vacuum reflow system. The bonded samples were aged at 330°C in air. After 1600 h, the joint strength was two times higher than that on the W-DB-free substrate, and no change was observed in the electrical resistance.
doi_str_mv 10.1007/s11664-011-1661-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031304727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369498871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-f70d50d9eb17c5558f8af8b9ca08e2107a589cac5776390f975c5600818401503</originalsourceid><addsrcrecordid>eNp1UV1rFDEUDaLguvoDfAuCUB9ic2cmH_vYbrWtVC2ugm8hk72RlJmkJjMt27_gnzZli4Lgy_0499zDvRxCXgJ_C5yrwwIgZcc4AKsFMPmILEB0LQMtvz8mC95WUDSteEqelXLFOQjQsCC_zsfrnG5wxDjREOmHFGrxBYdg-zCEaUeTp5uwppfpFjM9wZvgsNB-Ry09Cd7PJaRIj23OoY6PcbpFjPRoZqdIN2nYVtDGLV3Ph5_CweUb9hEnO4Q7rBBmOwZHN3NfpmwnLM_JE2-Hgi8e8pJ8e__u6_qMXXw-PV8fXTDXdd3EvOJbwbcr7EE5IYT22nrdr5zlGhvgygpdGyeUku2K-5USTkjONeiuvs3bJTnY69bPf85YJjOG4nAYbMQ0FwO8hZZ3qlGV-uof6lWac6zXGa24FlKrppJgT3I5lZLRm-scRpt3Vcncu2P27pjqjrl3x8i68_pB2BZnB59tdKH8WWy6Vja6xiVp9rxSR_EH5r8H_F_8NziOnVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870856872</pqid></control><display><type>article</type><title>Improvement in Joint Reliability of SiC Power Devices by a Diffusion Barrier Between Au-Ge Solder and Cu/Ni(P)-Metalized Ceramic Substrates</title><source>SpringerLink Journals</source><creator>Lang, Fengqun ; Yamaguchi, Hiroshi ; Ohashi, Hiromichi ; Sato, Hiroshi</creator><creatorcontrib>Lang, Fengqun ; Yamaguchi, Hiroshi ; Ohashi, Hiromichi ; Sato, Hiroshi</creatorcontrib><description>The long-term joint reliability of SiC power devices bonded on a ceramic substrate metalized with copper (Cu) and electroless nickel-phosphorus [Ni(P)] using a gold-germanium (Au-Ge) eutectic solder was investigated at 330°C in air. Rapid growth of Ni-Ge intermetallic compounds (IMCs) at the solder/Ni(P) interface and subsequent oxidation of the conductive Cu layer at the IMCs/Cu interface led to a dramatic decrease in bond strength and an increase in the electrical resistance of the joint. To improve the joint reliability, a 250-nm-thick tungsten (W) diffusion barrier (DB) was prepared on the surface of the substrate using a sputtering process. SiC Schottky barrier diode (SBD) power devices were then die-bonded to the W-DB-modified substrate with the Au-Ge eutectic solder using a vacuum reflow system. The bonded samples were aged at 330°C in air. After 1600 h, the joint strength was two times higher than that on the W-DB-free substrate, and no change was observed in the electrical resistance.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-011-1661-6</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Brazing. Soldering ; CERAMICS ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Cross-disciplinary physics: materials science; rheology ; Deposition by sputtering ; Devices ; DIFFUSION ; DIFFUSION BARRIERS ; Electric power generation ; Electric resistance ; ELECTRICITY ; ELECTRONIC PRODUCTS ; Electronics ; Electronics and Microelectronics ; Exact sciences and technology ; Gold ; Instrumentation ; Interfaces ; Joining, thermal cutting: metallurgical aspects ; Joint strength ; Materials ; Materials Science ; Metals. Metallurgy ; Methods of deposition of films and coatings; film growth and epitaxy ; Nickel ; Optical and Electronic Materials ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SILICON CARBIDE ; Soldering ; SOLDERING ALLOYS ; Solders ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2011-07, Vol.40 (7), p.1563-1571</ispartof><rights>TMS 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science &amp; Business Media Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-f70d50d9eb17c5558f8af8b9ca08e2107a589cac5776390f975c5600818401503</citedby><cites>FETCH-LOGICAL-c444t-f70d50d9eb17c5558f8af8b9ca08e2107a589cac5776390f975c5600818401503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-011-1661-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-011-1661-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24362824$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lang, Fengqun</creatorcontrib><creatorcontrib>Yamaguchi, Hiroshi</creatorcontrib><creatorcontrib>Ohashi, Hiromichi</creatorcontrib><creatorcontrib>Sato, Hiroshi</creatorcontrib><title>Improvement in Joint Reliability of SiC Power Devices by a Diffusion Barrier Between Au-Ge Solder and Cu/Ni(P)-Metalized Ceramic Substrates</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The long-term joint reliability of SiC power devices bonded on a ceramic substrate metalized with copper (Cu) and electroless nickel-phosphorus [Ni(P)] using a gold-germanium (Au-Ge) eutectic solder was investigated at 330°C in air. Rapid growth of Ni-Ge intermetallic compounds (IMCs) at the solder/Ni(P) interface and subsequent oxidation of the conductive Cu layer at the IMCs/Cu interface led to a dramatic decrease in bond strength and an increase in the electrical resistance of the joint. To improve the joint reliability, a 250-nm-thick tungsten (W) diffusion barrier (DB) was prepared on the surface of the substrate using a sputtering process. SiC Schottky barrier diode (SBD) power devices were then die-bonded to the W-DB-modified substrate with the Au-Ge eutectic solder using a vacuum reflow system. The bonded samples were aged at 330°C in air. After 1600 h, the joint strength was two times higher than that on the W-DB-free substrate, and no change was observed in the electrical resistance.</description><subject>Applied sciences</subject><subject>Brazing. Soldering</subject><subject>CERAMICS</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition by sputtering</subject><subject>Devices</subject><subject>DIFFUSION</subject><subject>DIFFUSION BARRIERS</subject><subject>Electric power generation</subject><subject>Electric resistance</subject><subject>ELECTRICITY</subject><subject>ELECTRONIC PRODUCTS</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Instrumentation</subject><subject>Interfaces</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Joint strength</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Metals. Metallurgy</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SILICON CARBIDE</subject><subject>Soldering</subject><subject>SOLDERING ALLOYS</subject><subject>Solders</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UV1rFDEUDaLguvoDfAuCUB9ic2cmH_vYbrWtVC2ugm8hk72RlJmkJjMt27_gnzZli4Lgy_0499zDvRxCXgJ_C5yrwwIgZcc4AKsFMPmILEB0LQMtvz8mC95WUDSteEqelXLFOQjQsCC_zsfrnG5wxDjREOmHFGrxBYdg-zCEaUeTp5uwppfpFjM9wZvgsNB-Ry09Cd7PJaRIj23OoY6PcbpFjPRoZqdIN2nYVtDGLV3Ph5_CweUb9hEnO4Q7rBBmOwZHN3NfpmwnLM_JE2-Hgi8e8pJ8e__u6_qMXXw-PV8fXTDXdd3EvOJbwbcr7EE5IYT22nrdr5zlGhvgygpdGyeUku2K-5USTkjONeiuvs3bJTnY69bPf85YJjOG4nAYbMQ0FwO8hZZ3qlGV-uof6lWac6zXGa24FlKrppJgT3I5lZLRm-scRpt3Vcncu2P27pjqjrl3x8i68_pB2BZnB59tdKH8WWy6Vja6xiVp9rxSR_EH5r8H_F_8NziOnVs</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Lang, Fengqun</creator><creator>Yamaguchi, Hiroshi</creator><creator>Ohashi, Hiromichi</creator><creator>Sato, Hiroshi</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110701</creationdate><title>Improvement in Joint Reliability of SiC Power Devices by a Diffusion Barrier Between Au-Ge Solder and Cu/Ni(P)-Metalized Ceramic Substrates</title><author>Lang, Fengqun ; Yamaguchi, Hiroshi ; Ohashi, Hiromichi ; Sato, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-f70d50d9eb17c5558f8af8b9ca08e2107a589cac5776390f975c5600818401503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Brazing. Soldering</topic><topic>CERAMICS</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition by sputtering</topic><topic>Devices</topic><topic>DIFFUSION</topic><topic>DIFFUSION BARRIERS</topic><topic>Electric power generation</topic><topic>Electric resistance</topic><topic>ELECTRICITY</topic><topic>ELECTRONIC PRODUCTS</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Instrumentation</topic><topic>Interfaces</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Joint strength</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Metals. Metallurgy</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SILICON CARBIDE</topic><topic>Soldering</topic><topic>SOLDERING ALLOYS</topic><topic>Solders</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Fengqun</creatorcontrib><creatorcontrib>Yamaguchi, Hiroshi</creatorcontrib><creatorcontrib>Ohashi, Hiromichi</creatorcontrib><creatorcontrib>Sato, Hiroshi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Fengqun</au><au>Yamaguchi, Hiroshi</au><au>Ohashi, Hiromichi</au><au>Sato, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement in Joint Reliability of SiC Power Devices by a Diffusion Barrier Between Au-Ge Solder and Cu/Ni(P)-Metalized Ceramic Substrates</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>40</volume><issue>7</issue><spage>1563</spage><epage>1571</epage><pages>1563-1571</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>The long-term joint reliability of SiC power devices bonded on a ceramic substrate metalized with copper (Cu) and electroless nickel-phosphorus [Ni(P)] using a gold-germanium (Au-Ge) eutectic solder was investigated at 330°C in air. Rapid growth of Ni-Ge intermetallic compounds (IMCs) at the solder/Ni(P) interface and subsequent oxidation of the conductive Cu layer at the IMCs/Cu interface led to a dramatic decrease in bond strength and an increase in the electrical resistance of the joint. To improve the joint reliability, a 250-nm-thick tungsten (W) diffusion barrier (DB) was prepared on the surface of the substrate using a sputtering process. SiC Schottky barrier diode (SBD) power devices were then die-bonded to the W-DB-modified substrate with the Au-Ge eutectic solder using a vacuum reflow system. The bonded samples were aged at 330°C in air. After 1600 h, the joint strength was two times higher than that on the W-DB-free substrate, and no change was observed in the electrical resistance.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-011-1661-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2011-07, Vol.40 (7), p.1563-1571
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_1031304727
source SpringerLink Journals
subjects Applied sciences
Brazing. Soldering
CERAMICS
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Cross-disciplinary physics: materials science
rheology
Deposition by sputtering
Devices
DIFFUSION
DIFFUSION BARRIERS
Electric power generation
Electric resistance
ELECTRICITY
ELECTRONIC PRODUCTS
Electronics
Electronics and Microelectronics
Exact sciences and technology
Gold
Instrumentation
Interfaces
Joining, thermal cutting: metallurgical aspects
Joint strength
Materials
Materials Science
Metals. Metallurgy
Methods of deposition of films and coatings
film growth and epitaxy
Nickel
Optical and Electronic Materials
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
SILICON CARBIDE
Soldering
SOLDERING ALLOYS
Solders
Solid State Physics
title Improvement in Joint Reliability of SiC Power Devices by a Diffusion Barrier Between Au-Ge Solder and Cu/Ni(P)-Metalized Ceramic Substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20in%20Joint%20Reliability%20of%20SiC%20Power%20Devices%20by%20a%20Diffusion%20Barrier%20Between%20Au-Ge%20Solder%20and%20Cu/Ni(P)-Metalized%20Ceramic%20Substrates&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Lang,%20Fengqun&rft.date=2011-07-01&rft.volume=40&rft.issue=7&rft.spage=1563&rft.epage=1571&rft.pages=1563-1571&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-011-1661-6&rft_dat=%3Cproquest_cross%3E2369498871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870856872&rft_id=info:pmid/&rfr_iscdi=true