Improvement in Joint Reliability of SiC Power Devices by a Diffusion Barrier Between Au-Ge Solder and Cu/Ni(P)-Metalized Ceramic Substrates
The long-term joint reliability of SiC power devices bonded on a ceramic substrate metalized with copper (Cu) and electroless nickel-phosphorus [Ni(P)] using a gold-germanium (Au-Ge) eutectic solder was investigated at 330°C in air. Rapid growth of Ni-Ge intermetallic compounds (IMCs) at the solder/...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2011-07, Vol.40 (7), p.1563-1571 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1571 |
---|---|
container_issue | 7 |
container_start_page | 1563 |
container_title | Journal of electronic materials |
container_volume | 40 |
creator | Lang, Fengqun Yamaguchi, Hiroshi Ohashi, Hiromichi Sato, Hiroshi |
description | The long-term joint reliability of SiC power devices bonded on a ceramic substrate metalized with copper (Cu) and electroless nickel-phosphorus [Ni(P)] using a gold-germanium (Au-Ge) eutectic solder was investigated at 330°C in air. Rapid growth of Ni-Ge intermetallic compounds (IMCs) at the solder/Ni(P) interface and subsequent oxidation of the conductive Cu layer at the IMCs/Cu interface led to a dramatic decrease in bond strength and an increase in the electrical resistance of the joint. To improve the joint reliability, a 250-nm-thick tungsten (W) diffusion barrier (DB) was prepared on the surface of the substrate using a sputtering process. SiC Schottky barrier diode (SBD) power devices were then die-bonded to the W-DB-modified substrate with the Au-Ge eutectic solder using a vacuum reflow system. The bonded samples were aged at 330°C in air. After 1600 h, the joint strength was two times higher than that on the W-DB-free substrate, and no change was observed in the electrical resistance. |
doi_str_mv | 10.1007/s11664-011-1661-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031304727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369498871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-f70d50d9eb17c5558f8af8b9ca08e2107a589cac5776390f975c5600818401503</originalsourceid><addsrcrecordid>eNp1UV1rFDEUDaLguvoDfAuCUB9ic2cmH_vYbrWtVC2ugm8hk72RlJmkJjMt27_gnzZli4Lgy_0499zDvRxCXgJ_C5yrwwIgZcc4AKsFMPmILEB0LQMtvz8mC95WUDSteEqelXLFOQjQsCC_zsfrnG5wxDjREOmHFGrxBYdg-zCEaUeTp5uwppfpFjM9wZvgsNB-Ry09Cd7PJaRIj23OoY6PcbpFjPRoZqdIN2nYVtDGLV3Ph5_CweUb9hEnO4Q7rBBmOwZHN3NfpmwnLM_JE2-Hgi8e8pJ8e__u6_qMXXw-PV8fXTDXdd3EvOJbwbcr7EE5IYT22nrdr5zlGhvgygpdGyeUku2K-5USTkjONeiuvs3bJTnY69bPf85YJjOG4nAYbMQ0FwO8hZZ3qlGV-uof6lWac6zXGa24FlKrppJgT3I5lZLRm-scRpt3Vcncu2P27pjqjrl3x8i68_pB2BZnB59tdKH8WWy6Vja6xiVp9rxSR_EH5r8H_F_8NziOnVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870856872</pqid></control><display><type>article</type><title>Improvement in Joint Reliability of SiC Power Devices by a Diffusion Barrier Between Au-Ge Solder and Cu/Ni(P)-Metalized Ceramic Substrates</title><source>SpringerLink Journals</source><creator>Lang, Fengqun ; Yamaguchi, Hiroshi ; Ohashi, Hiromichi ; Sato, Hiroshi</creator><creatorcontrib>Lang, Fengqun ; Yamaguchi, Hiroshi ; Ohashi, Hiromichi ; Sato, Hiroshi</creatorcontrib><description>The long-term joint reliability of SiC power devices bonded on a ceramic substrate metalized with copper (Cu) and electroless nickel-phosphorus [Ni(P)] using a gold-germanium (Au-Ge) eutectic solder was investigated at 330°C in air. Rapid growth of Ni-Ge intermetallic compounds (IMCs) at the solder/Ni(P) interface and subsequent oxidation of the conductive Cu layer at the IMCs/Cu interface led to a dramatic decrease in bond strength and an increase in the electrical resistance of the joint. To improve the joint reliability, a 250-nm-thick tungsten (W) diffusion barrier (DB) was prepared on the surface of the substrate using a sputtering process. SiC Schottky barrier diode (SBD) power devices were then die-bonded to the W-DB-modified substrate with the Au-Ge eutectic solder using a vacuum reflow system. The bonded samples were aged at 330°C in air. After 1600 h, the joint strength was two times higher than that on the W-DB-free substrate, and no change was observed in the electrical resistance.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-011-1661-6</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Brazing. Soldering ; CERAMICS ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Cross-disciplinary physics: materials science; rheology ; Deposition by sputtering ; Devices ; DIFFUSION ; DIFFUSION BARRIERS ; Electric power generation ; Electric resistance ; ELECTRICITY ; ELECTRONIC PRODUCTS ; Electronics ; Electronics and Microelectronics ; Exact sciences and technology ; Gold ; Instrumentation ; Interfaces ; Joining, thermal cutting: metallurgical aspects ; Joint strength ; Materials ; Materials Science ; Metals. Metallurgy ; Methods of deposition of films and coatings; film growth and epitaxy ; Nickel ; Optical and Electronic Materials ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SILICON CARBIDE ; Soldering ; SOLDERING ALLOYS ; Solders ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2011-07, Vol.40 (7), p.1563-1571</ispartof><rights>TMS 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science & Business Media Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-f70d50d9eb17c5558f8af8b9ca08e2107a589cac5776390f975c5600818401503</citedby><cites>FETCH-LOGICAL-c444t-f70d50d9eb17c5558f8af8b9ca08e2107a589cac5776390f975c5600818401503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-011-1661-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-011-1661-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24362824$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lang, Fengqun</creatorcontrib><creatorcontrib>Yamaguchi, Hiroshi</creatorcontrib><creatorcontrib>Ohashi, Hiromichi</creatorcontrib><creatorcontrib>Sato, Hiroshi</creatorcontrib><title>Improvement in Joint Reliability of SiC Power Devices by a Diffusion Barrier Between Au-Ge Solder and Cu/Ni(P)-Metalized Ceramic Substrates</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The long-term joint reliability of SiC power devices bonded on a ceramic substrate metalized with copper (Cu) and electroless nickel-phosphorus [Ni(P)] using a gold-germanium (Au-Ge) eutectic solder was investigated at 330°C in air. Rapid growth of Ni-Ge intermetallic compounds (IMCs) at the solder/Ni(P) interface and subsequent oxidation of the conductive Cu layer at the IMCs/Cu interface led to a dramatic decrease in bond strength and an increase in the electrical resistance of the joint. To improve the joint reliability, a 250-nm-thick tungsten (W) diffusion barrier (DB) was prepared on the surface of the substrate using a sputtering process. SiC Schottky barrier diode (SBD) power devices were then die-bonded to the W-DB-modified substrate with the Au-Ge eutectic solder using a vacuum reflow system. The bonded samples were aged at 330°C in air. After 1600 h, the joint strength was two times higher than that on the W-DB-free substrate, and no change was observed in the electrical resistance.</description><subject>Applied sciences</subject><subject>Brazing. Soldering</subject><subject>CERAMICS</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition by sputtering</subject><subject>Devices</subject><subject>DIFFUSION</subject><subject>DIFFUSION BARRIERS</subject><subject>Electric power generation</subject><subject>Electric resistance</subject><subject>ELECTRICITY</subject><subject>ELECTRONIC PRODUCTS</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Instrumentation</subject><subject>Interfaces</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Joint strength</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Metals. Metallurgy</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SILICON CARBIDE</subject><subject>Soldering</subject><subject>SOLDERING ALLOYS</subject><subject>Solders</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UV1rFDEUDaLguvoDfAuCUB9ic2cmH_vYbrWtVC2ugm8hk72RlJmkJjMt27_gnzZli4Lgy_0499zDvRxCXgJ_C5yrwwIgZcc4AKsFMPmILEB0LQMtvz8mC95WUDSteEqelXLFOQjQsCC_zsfrnG5wxDjREOmHFGrxBYdg-zCEaUeTp5uwppfpFjM9wZvgsNB-Ry09Cd7PJaRIj23OoY6PcbpFjPRoZqdIN2nYVtDGLV3Ph5_CweUb9hEnO4Q7rBBmOwZHN3NfpmwnLM_JE2-Hgi8e8pJ8e__u6_qMXXw-PV8fXTDXdd3EvOJbwbcr7EE5IYT22nrdr5zlGhvgygpdGyeUku2K-5USTkjONeiuvs3bJTnY69bPf85YJjOG4nAYbMQ0FwO8hZZ3qlGV-uof6lWac6zXGa24FlKrppJgT3I5lZLRm-scRpt3Vcncu2P27pjqjrl3x8i68_pB2BZnB59tdKH8WWy6Vja6xiVp9rxSR_EH5r8H_F_8NziOnVs</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Lang, Fengqun</creator><creator>Yamaguchi, Hiroshi</creator><creator>Ohashi, Hiromichi</creator><creator>Sato, Hiroshi</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110701</creationdate><title>Improvement in Joint Reliability of SiC Power Devices by a Diffusion Barrier Between Au-Ge Solder and Cu/Ni(P)-Metalized Ceramic Substrates</title><author>Lang, Fengqun ; Yamaguchi, Hiroshi ; Ohashi, Hiromichi ; Sato, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-f70d50d9eb17c5558f8af8b9ca08e2107a589cac5776390f975c5600818401503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Brazing. Soldering</topic><topic>CERAMICS</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition by sputtering</topic><topic>Devices</topic><topic>DIFFUSION</topic><topic>DIFFUSION BARRIERS</topic><topic>Electric power generation</topic><topic>Electric resistance</topic><topic>ELECTRICITY</topic><topic>ELECTRONIC PRODUCTS</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Instrumentation</topic><topic>Interfaces</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Joint strength</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Metals. Metallurgy</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SILICON CARBIDE</topic><topic>Soldering</topic><topic>SOLDERING ALLOYS</topic><topic>Solders</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Fengqun</creatorcontrib><creatorcontrib>Yamaguchi, Hiroshi</creatorcontrib><creatorcontrib>Ohashi, Hiromichi</creatorcontrib><creatorcontrib>Sato, Hiroshi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Fengqun</au><au>Yamaguchi, Hiroshi</au><au>Ohashi, Hiromichi</au><au>Sato, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement in Joint Reliability of SiC Power Devices by a Diffusion Barrier Between Au-Ge Solder and Cu/Ni(P)-Metalized Ceramic Substrates</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>40</volume><issue>7</issue><spage>1563</spage><epage>1571</epage><pages>1563-1571</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>The long-term joint reliability of SiC power devices bonded on a ceramic substrate metalized with copper (Cu) and electroless nickel-phosphorus [Ni(P)] using a gold-germanium (Au-Ge) eutectic solder was investigated at 330°C in air. Rapid growth of Ni-Ge intermetallic compounds (IMCs) at the solder/Ni(P) interface and subsequent oxidation of the conductive Cu layer at the IMCs/Cu interface led to a dramatic decrease in bond strength and an increase in the electrical resistance of the joint. To improve the joint reliability, a 250-nm-thick tungsten (W) diffusion barrier (DB) was prepared on the surface of the substrate using a sputtering process. SiC Schottky barrier diode (SBD) power devices were then die-bonded to the W-DB-modified substrate with the Au-Ge eutectic solder using a vacuum reflow system. The bonded samples were aged at 330°C in air. After 1600 h, the joint strength was two times higher than that on the W-DB-free substrate, and no change was observed in the electrical resistance.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-011-1661-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2011-07, Vol.40 (7), p.1563-1571 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_1031304727 |
source | SpringerLink Journals |
subjects | Applied sciences Brazing. Soldering CERAMICS Characterization and Evaluation of Materials Chemistry and Materials Science Copper Cross-disciplinary physics: materials science rheology Deposition by sputtering Devices DIFFUSION DIFFUSION BARRIERS Electric power generation Electric resistance ELECTRICITY ELECTRONIC PRODUCTS Electronics Electronics and Microelectronics Exact sciences and technology Gold Instrumentation Interfaces Joining, thermal cutting: metallurgical aspects Joint strength Materials Materials Science Metals. Metallurgy Methods of deposition of films and coatings film growth and epitaxy Nickel Optical and Electronic Materials Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices SILICON CARBIDE Soldering SOLDERING ALLOYS Solders Solid State Physics |
title | Improvement in Joint Reliability of SiC Power Devices by a Diffusion Barrier Between Au-Ge Solder and Cu/Ni(P)-Metalized Ceramic Substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20in%20Joint%20Reliability%20of%20SiC%20Power%20Devices%20by%20a%20Diffusion%20Barrier%20Between%20Au-Ge%20Solder%20and%20Cu/Ni(P)-Metalized%20Ceramic%20Substrates&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Lang,%20Fengqun&rft.date=2011-07-01&rft.volume=40&rft.issue=7&rft.spage=1563&rft.epage=1571&rft.pages=1563-1571&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-011-1661-6&rft_dat=%3Cproquest_cross%3E2369498871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870856872&rft_id=info:pmid/&rfr_iscdi=true |