New Steganalysis Method using GLCM and Neural Network

Steganography is the art of hidden writing and secret communication. The goal of Steganography is to hide a message in a multimedia objet such as image. Steganalysis is the art and science of detecting such the hidden messages. The Gray level Co-occurrence matrix (GLCM) is the matrix containing info...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2012-01, Vol.42 (7)
Hauptverfasser: Ghanbari, Sedighe, Keshtegary, Manije, Ghanbari, Najme
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title International journal of computer applications
container_volume 42
creator Ghanbari, Sedighe
Keshtegary, Manije
Ghanbari, Najme
description Steganography is the art of hidden writing and secret communication. The goal of Steganography is to hide a message in a multimedia objet such as image. Steganalysis is the art and science of detecting such the hidden messages. The Gray level Co-occurrence matrix (GLCM) is the matrix containing information about the relationship between values of adjacent pixel in an image. In this paper, we extract features from GLCM that are different between cover image (image without hidden information) and stego image (image with hidden information). In the proposed algorithm, first, we use a combined method of steganography based on both location and conversion to hide the information in the original image and call it image-steg1 image. Then, we hide the information in imagesteg1 again and call it image-steg2. Using GLCM matrix properties, we investigate some different features in the GLCM of the original image and stego images. We can extract features that are different between these images. Features are used for training neural network and the classification step was accomplished using four layers Multi Layer Perceptron (MLP) neural network. We tested our algorithm on 800 standard image databases and we detected 80% of stego images. Therefore, our proposed algorithm efficiency is 80%.
doi_str_mv 10.5120/5709-6266
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031304555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031304555</sourcerecordid><originalsourceid>FETCH-LOGICAL-p615-74cf1dbe583370d65c2b8c78d477f03813a53aac53ee6111f33bfa7d3940e5033</originalsourceid><addsrcrecordid>eNpdj7FOwzAURS0EElXpwB9YYmEx2H55tjOiCApSWga6V078UlJCUuJEFX9PEAyIu5w7HF3pMnap5A0qLW_RylQYbcwJm8nUonDO2dM__ZwtYtzLKZBqkyYzhms68peBdr71zWesI1_R8NoFPsa63fFlnq24bwNf09j7ZsJw7Pq3C3ZW-SbS4pdztnm432SPIn9ePmV3uTgYhcImZaVCQegArAwGS1240rqQWFtJcAo8gvclApFRSlUAReVtgDSRhBJgzq5_Zg999zFSHLbvdSypaXxL3Ri3SoICmSDipF79U_fd2E-fvi2l0ThEDV9ZE1KA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1012568552</pqid></control><display><type>article</type><title>New Steganalysis Method using GLCM and Neural Network</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ghanbari, Sedighe ; Keshtegary, Manije ; Ghanbari, Najme</creator><creatorcontrib>Ghanbari, Sedighe ; Keshtegary, Manije ; Ghanbari, Najme</creatorcontrib><description>Steganography is the art of hidden writing and secret communication. The goal of Steganography is to hide a message in a multimedia objet such as image. Steganalysis is the art and science of detecting such the hidden messages. The Gray level Co-occurrence matrix (GLCM) is the matrix containing information about the relationship between values of adjacent pixel in an image. In this paper, we extract features from GLCM that are different between cover image (image without hidden information) and stego image (image with hidden information). In the proposed algorithm, first, we use a combined method of steganography based on both location and conversion to hide the information in the original image and call it image-steg1 image. Then, we hide the information in imagesteg1 again and call it image-steg2. Using GLCM matrix properties, we investigate some different features in the GLCM of the original image and stego images. We can extract features that are different between these images. Features are used for training neural network and the classification step was accomplished using four layers Multi Layer Perceptron (MLP) neural network. We tested our algorithm on 800 standard image databases and we detected 80% of stego images. Therefore, our proposed algorithm efficiency is 80%.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/5709-6266</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><ispartof>International journal of computer applications, 2012-01, Vol.42 (7)</ispartof><rights>Copyright Foundation of Computer Science 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Ghanbari, Sedighe</creatorcontrib><creatorcontrib>Keshtegary, Manije</creatorcontrib><creatorcontrib>Ghanbari, Najme</creatorcontrib><title>New Steganalysis Method using GLCM and Neural Network</title><title>International journal of computer applications</title><description>Steganography is the art of hidden writing and secret communication. The goal of Steganography is to hide a message in a multimedia objet such as image. Steganalysis is the art and science of detecting such the hidden messages. The Gray level Co-occurrence matrix (GLCM) is the matrix containing information about the relationship between values of adjacent pixel in an image. In this paper, we extract features from GLCM that are different between cover image (image without hidden information) and stego image (image with hidden information). In the proposed algorithm, first, we use a combined method of steganography based on both location and conversion to hide the information in the original image and call it image-steg1 image. Then, we hide the information in imagesteg1 again and call it image-steg2. Using GLCM matrix properties, we investigate some different features in the GLCM of the original image and stego images. We can extract features that are different between these images. Features are used for training neural network and the classification step was accomplished using four layers Multi Layer Perceptron (MLP) neural network. We tested our algorithm on 800 standard image databases and we detected 80% of stego images. Therefore, our proposed algorithm efficiency is 80%.</description><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdj7FOwzAURS0EElXpwB9YYmEx2H55tjOiCApSWga6V078UlJCUuJEFX9PEAyIu5w7HF3pMnap5A0qLW_RylQYbcwJm8nUonDO2dM__ZwtYtzLKZBqkyYzhms68peBdr71zWesI1_R8NoFPsa63fFlnq24bwNf09j7ZsJw7Pq3C3ZW-SbS4pdztnm432SPIn9ePmV3uTgYhcImZaVCQegArAwGS1240rqQWFtJcAo8gvclApFRSlUAReVtgDSRhBJgzq5_Zg999zFSHLbvdSypaXxL3Ri3SoICmSDipF79U_fd2E-fvi2l0ThEDV9ZE1KA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Ghanbari, Sedighe</creator><creator>Keshtegary, Manije</creator><creator>Ghanbari, Najme</creator><general>Foundation of Computer Science</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120101</creationdate><title>New Steganalysis Method using GLCM and Neural Network</title><author>Ghanbari, Sedighe ; Keshtegary, Manije ; Ghanbari, Najme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p615-74cf1dbe583370d65c2b8c78d477f03813a53aac53ee6111f33bfa7d3940e5033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ghanbari, Sedighe</creatorcontrib><creatorcontrib>Keshtegary, Manije</creatorcontrib><creatorcontrib>Ghanbari, Najme</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghanbari, Sedighe</au><au>Keshtegary, Manije</au><au>Ghanbari, Najme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Steganalysis Method using GLCM and Neural Network</atitle><jtitle>International journal of computer applications</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>42</volume><issue>7</issue><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Steganography is the art of hidden writing and secret communication. The goal of Steganography is to hide a message in a multimedia objet such as image. Steganalysis is the art and science of detecting such the hidden messages. The Gray level Co-occurrence matrix (GLCM) is the matrix containing information about the relationship between values of adjacent pixel in an image. In this paper, we extract features from GLCM that are different between cover image (image without hidden information) and stego image (image with hidden information). In the proposed algorithm, first, we use a combined method of steganography based on both location and conversion to hide the information in the original image and call it image-steg1 image. Then, we hide the information in imagesteg1 again and call it image-steg2. Using GLCM matrix properties, we investigate some different features in the GLCM of the original image and stego images. We can extract features that are different between these images. Features are used for training neural network and the classification step was accomplished using four layers Multi Layer Perceptron (MLP) neural network. We tested our algorithm on 800 standard image databases and we detected 80% of stego images. Therefore, our proposed algorithm efficiency is 80%.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/5709-6266</doi></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2012-01, Vol.42 (7)
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1031304555
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title New Steganalysis Method using GLCM and Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Steganalysis%20Method%20using%20GLCM%20and%20Neural%20Network&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Ghanbari,%20Sedighe&rft.date=2012-01-01&rft.volume=42&rft.issue=7&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/5709-6266&rft_dat=%3Cproquest%3E1031304555%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1012568552&rft_id=info:pmid/&rfr_iscdi=true