Gas Turbine Blade Damper Optimization Methodology
The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and n...
Gespeichert in:
Veröffentlicht in: | Advances in Acoustics and Vibration 2012-01, Vol.2012 (2012), p.218-230 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 2012 |
container_start_page | 218 |
container_title | Advances in Acoustics and Vibration |
container_volume | 2012 |
creator | Giridhar, R. K. Ramaiah, P. V. Krishnaiah, G. Barad, S. G. |
description | The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to develop an analytical model of blade damper system. The second phase is experimentation and model tuning necessary for response studies while the third phase is evaluating damper performance. The reduced model of blade is developed corresponding to the mode under investigation incorporating the friction damper then the simulations were carried out to arrive at an optimum design point of the damper. Bench tests were carried out in two phases. Phase-1 deals with characterization of the blade dynamically and the phase-2 deals with finding optimal normal load at which the blade resonating response is minimal for a given excitation. The test results are discussed, and are corroborated with simulated results, are in good agreement. |
doi_str_mv | 10.1155/2012/316761 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031304021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20150716001_201212_201802220017_201802220017_218_230</airiti_id><sourcerecordid>2659927991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a457t-1eb126a1d63fb7c7e59d2eb2f6a1cbe056a5aa3d8001be7a3927d6fb3a2c2d303</originalsourceid><addsrcrecordid>eNqFkEFLw0AQRoMoWKsnz0LAiyi1O7PJbnLUqlWo1EMFb2GSbOyWNIm7KVJ_vVsjFXrxNLszj4-P53mnwK4BwnCIDHDIQUgBe14PRCQHAuXb_vYt4NA7snbBmABkcc-DMVl_tjKprpR_W1Ku_DtaNsr406bVS_1Fra4r_1m18zqvy_p9fewdFFRadfI7-97rw_1s9DiYTMdPo5vJgIJQtgNQKaAgyAUvUplJFcY5qhQLt8tSxUJBIRHPI8YgVZJ4jDIXRcoJM8w5433vosttTP2xUrZNltpmqiypUvXKJsA4cBYwBIee76CLemUq185RrkUsWBA76qqjMlNba1SRNEYvyawdlGz0JRt9SafP0ZcdPddVTp_6H_isg5VDVEFbOBAYY-Tuk-5O2uhW_9V7cSkhkyCchZ9El-lGxBDRreTOB6IEnZpvgieLFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1012696049</pqid></control><display><type>article</type><title>Gas Turbine Blade Damper Optimization Methodology</title><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Giridhar, R. K. ; Ramaiah, P. V. ; Krishnaiah, G. ; Barad, S. G.</creator><contributor>Soenarko, Benjamin</contributor><creatorcontrib>Giridhar, R. K. ; Ramaiah, P. V. ; Krishnaiah, G. ; Barad, S. G. ; Soenarko, Benjamin</creatorcontrib><description>The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to develop an analytical model of blade damper system. The second phase is experimentation and model tuning necessary for response studies while the third phase is evaluating damper performance. The reduced model of blade is developed corresponding to the mode under investigation incorporating the friction damper then the simulations were carried out to arrive at an optimum design point of the damper. Bench tests were carried out in two phases. Phase-1 deals with characterization of the blade dynamically and the phase-2 deals with finding optimal normal load at which the blade resonating response is minimal for a given excitation. The test results are discussed, and are corroborated with simulated results, are in good agreement.</description><identifier>ISSN: 1687-6261</identifier><identifier>EISSN: 1687-627X</identifier><identifier>DOI: 10.1155/2012/316761</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Blades ; Dampers ; Damping ; Excitation ; Friction ; Load ; Mathematical models ; Methodology ; Optimization ; Phases ; Studies</subject><ispartof>Advances in Acoustics and Vibration, 2012-01, Vol.2012 (2012), p.218-230</ispartof><rights>Copyright © 2012 R. K. Giridhar et al.</rights><rights>Copyright © 2012 R. K. Giridhar et al. R. K. Giridhar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a457t-1eb126a1d63fb7c7e59d2eb2f6a1cbe056a5aa3d8001be7a3927d6fb3a2c2d303</citedby><cites>FETCH-LOGICAL-a457t-1eb126a1d63fb7c7e59d2eb2f6a1cbe056a5aa3d8001be7a3927d6fb3a2c2d303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Soenarko, Benjamin</contributor><creatorcontrib>Giridhar, R. K.</creatorcontrib><creatorcontrib>Ramaiah, P. V.</creatorcontrib><creatorcontrib>Krishnaiah, G.</creatorcontrib><creatorcontrib>Barad, S. G.</creatorcontrib><title>Gas Turbine Blade Damper Optimization Methodology</title><title>Advances in Acoustics and Vibration</title><description>The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to develop an analytical model of blade damper system. The second phase is experimentation and model tuning necessary for response studies while the third phase is evaluating damper performance. The reduced model of blade is developed corresponding to the mode under investigation incorporating the friction damper then the simulations were carried out to arrive at an optimum design point of the damper. Bench tests were carried out in two phases. Phase-1 deals with characterization of the blade dynamically and the phase-2 deals with finding optimal normal load at which the blade resonating response is minimal for a given excitation. The test results are discussed, and are corroborated with simulated results, are in good agreement.</description><subject>Blades</subject><subject>Dampers</subject><subject>Damping</subject><subject>Excitation</subject><subject>Friction</subject><subject>Load</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Optimization</subject><subject>Phases</subject><subject>Studies</subject><issn>1687-6261</issn><issn>1687-627X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEFLw0AQRoMoWKsnz0LAiyi1O7PJbnLUqlWo1EMFb2GSbOyWNIm7KVJ_vVsjFXrxNLszj4-P53mnwK4BwnCIDHDIQUgBe14PRCQHAuXb_vYt4NA7snbBmABkcc-DMVl_tjKprpR_W1Ku_DtaNsr406bVS_1Fra4r_1m18zqvy_p9fewdFFRadfI7-97rw_1s9DiYTMdPo5vJgIJQtgNQKaAgyAUvUplJFcY5qhQLt8tSxUJBIRHPI8YgVZJ4jDIXRcoJM8w5433vosttTP2xUrZNltpmqiypUvXKJsA4cBYwBIee76CLemUq185RrkUsWBA76qqjMlNba1SRNEYvyawdlGz0JRt9SafP0ZcdPddVTp_6H_isg5VDVEFbOBAYY-Tuk-5O2uhW_9V7cSkhkyCchZ9El-lGxBDRreTOB6IEnZpvgieLFw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Giridhar, R. K.</creator><creator>Ramaiah, P. V.</creator><creator>Krishnaiah, G.</creator><creator>Barad, S. G.</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>H8D</scope></search><sort><creationdate>20120101</creationdate><title>Gas Turbine Blade Damper Optimization Methodology</title><author>Giridhar, R. K. ; Ramaiah, P. V. ; Krishnaiah, G. ; Barad, S. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a457t-1eb126a1d63fb7c7e59d2eb2f6a1cbe056a5aa3d8001be7a3927d6fb3a2c2d303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Blades</topic><topic>Dampers</topic><topic>Damping</topic><topic>Excitation</topic><topic>Friction</topic><topic>Load</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Optimization</topic><topic>Phases</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giridhar, R. K.</creatorcontrib><creatorcontrib>Ramaiah, P. V.</creatorcontrib><creatorcontrib>Krishnaiah, G.</creatorcontrib><creatorcontrib>Barad, S. G.</creatorcontrib><collection>Chinese Electronic Periodical Services (CEPS)</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Aerospace Database</collection><jtitle>Advances in Acoustics and Vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giridhar, R. K.</au><au>Ramaiah, P. V.</au><au>Krishnaiah, G.</au><au>Barad, S. G.</au><au>Soenarko, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas Turbine Blade Damper Optimization Methodology</atitle><jtitle>Advances in Acoustics and Vibration</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>218</spage><epage>230</epage><pages>218-230</pages><issn>1687-6261</issn><eissn>1687-627X</eissn><abstract>The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to develop an analytical model of blade damper system. The second phase is experimentation and model tuning necessary for response studies while the third phase is evaluating damper performance. The reduced model of blade is developed corresponding to the mode under investigation incorporating the friction damper then the simulations were carried out to arrive at an optimum design point of the damper. Bench tests were carried out in two phases. Phase-1 deals with characterization of the blade dynamically and the phase-2 deals with finding optimal normal load at which the blade resonating response is minimal for a given excitation. The test results are discussed, and are corroborated with simulated results, are in good agreement.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2012/316761</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-6261 |
ispartof | Advances in Acoustics and Vibration, 2012-01, Vol.2012 (2012), p.218-230 |
issn | 1687-6261 1687-627X |
language | eng |
recordid | cdi_proquest_miscellaneous_1031304021 |
source | Wiley Online Library Open Access; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Blades Dampers Damping Excitation Friction Load Mathematical models Methodology Optimization Phases Studies |
title | Gas Turbine Blade Damper Optimization Methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20Turbine%20Blade%20Damper%20Optimization%20Methodology&rft.jtitle=Advances%20in%20Acoustics%20and%20Vibration&rft.au=Giridhar,%20R.%20K.&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=218&rft.epage=230&rft.pages=218-230&rft.issn=1687-6261&rft.eissn=1687-627X&rft_id=info:doi/10.1155/2012/316761&rft_dat=%3Cproquest_cross%3E2659927991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1012696049&rft_id=info:pmid/&rft_airiti_id=P20150716001_201212_201802220017_201802220017_218_230&rfr_iscdi=true |