Dynamics of arc phenomena at closure of electrical contacts in vacuum circuit breakers

Dynamic phenomena accompanying electrical contact closure in vacuum circuit breakers are considered as consecutive stages, including breakdown, touch, compression, restitution, bridging, and arcing at bouncing. The hybrid mathematical model is elaborated to describe dynamics of the arc and forces ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2005-10, Vol.33 (5), p.1576-1581
Hauptverfasser: Kharin, S.N., Nouri, H., Amft, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1581
container_issue 5
container_start_page 1576
container_title IEEE transactions on plasma science
container_volume 33
creator Kharin, S.N.
Nouri, H.
Amft, D.
description Dynamic phenomena accompanying electrical contact closure in vacuum circuit breakers are considered as consecutive stages, including breakdown, touch, compression, restitution, bridging, and arcing at bouncing. The hybrid mathematical model is elaborated to describe dynamics of the arc and forces acting in the contact gap. The model uses experimental oscillograms of current, voltage and contact displacement and nonlinear equations for arc, anode and cathode temperature fields, and contact motion. Experiments are carried out using a standard vacuum circuit breaker with laser sensors for the measurement of contact gap. The special difference path method is applied to take into account oscillations of a fixed contact. The axisymmetric Stefan problem with two free boundaries corresponding to melting and evaporation interfaces is solved to find dynamics of contact evaporation. It is shown theoretically and confirmed experimentally that in the range of high currents, the force of metallic vapor pressure at arcing in vacuum is comparable with magnetic repulsion force and should be taken into consideration. Two mechanisms of vapor pressure formation and evolution are discussed, which occur due to explosion of micro-asperities at contact touch or due to arcing after bridge rupture at contact bouncing.
doi_str_mv 10.1109/TPS.2005.856528
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031300300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1518980</ieee_id><sourcerecordid>917236651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-344c74ac7b7e8908ce6d535e93ab462c04be4af2ef1be00f6c6953feb655872d3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouK6ePXgJHsRLdydJ0yZH8RsWFFy9lnR2il37sSatsP_elhUED8LAHOZ5Xxgexk4FzIQAO18-v8wkgJ4ZnWhp9thEWGUjq1K9zyYAVkXKCHXIjkJYA4hYg5ywt5tt4-oSA28L7jzyzTs1bU2N467jWLWh9zTeqCLsfImu4tg2ncMu8LLhXw77vuZYeuzLjuee3Af5cMwOClcFOvnZU_Z6d7u8fogWT_eP11eLCJWWXaTiGNPYYZqnZCwYpGSllSarXB4nEiHOKXaFpELkBFAkmFitCsoTrU0qV2rKLna9G99-9hS6rC4DUlW5hto-ZNIMj2uZDODlv6AAJRTAOFN2_gddt71vhjcyYbVIhVZj33wHoW9D8FRkG1_Wzm-Hpmz0kQ0-stFHtvMxJM52iZKIfmktjDWgvgE2cIYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195171536</pqid></control><display><type>article</type><title>Dynamics of arc phenomena at closure of electrical contacts in vacuum circuit breakers</title><source>IEEE Electronic Library (IEL)</source><creator>Kharin, S.N. ; Nouri, H. ; Amft, D.</creator><creatorcontrib>Kharin, S.N. ; Nouri, H. ; Amft, D.</creatorcontrib><description>Dynamic phenomena accompanying electrical contact closure in vacuum circuit breakers are considered as consecutive stages, including breakdown, touch, compression, restitution, bridging, and arcing at bouncing. The hybrid mathematical model is elaborated to describe dynamics of the arc and forces acting in the contact gap. The model uses experimental oscillograms of current, voltage and contact displacement and nonlinear equations for arc, anode and cathode temperature fields, and contact motion. Experiments are carried out using a standard vacuum circuit breaker with laser sensors for the measurement of contact gap. The special difference path method is applied to take into account oscillations of a fixed contact. The axisymmetric Stefan problem with two free boundaries corresponding to melting and evaporation interfaces is solved to find dynamics of contact evaporation. It is shown theoretically and confirmed experimentally that in the range of high currents, the force of metallic vapor pressure at arcing in vacuum is comparable with magnetic repulsion force and should be taken into consideration. Two mechanisms of vapor pressure formation and evolution are discussed, which occur due to explosion of micro-asperities at contact touch or due to arcing after bridge rupture at contact bouncing.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2005.856528</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Bouncing ; Cathodes ; Circuit breakers ; Circuits ; Contacts ; Dynamics ; Dynamics of closure and opening ; Electric currents ; Evaporation ; Explosive forming ; Mathematical model ; mathematical modeling ; Mathematical models ; metallic vapor pressure ; Nonlinear equations ; Temperature sensors ; Touch ; Vacuum arcs ; Vacuum breakdown ; vacuum circuit breaker ; Vacuum technology ; Vapor pressure ; Voltage</subject><ispartof>IEEE transactions on plasma science, 2005-10, Vol.33 (5), p.1576-1581</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-344c74ac7b7e8908ce6d535e93ab462c04be4af2ef1be00f6c6953feb655872d3</citedby><cites>FETCH-LOGICAL-c352t-344c74ac7b7e8908ce6d535e93ab462c04be4af2ef1be00f6c6953feb655872d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1518980$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1518980$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kharin, S.N.</creatorcontrib><creatorcontrib>Nouri, H.</creatorcontrib><creatorcontrib>Amft, D.</creatorcontrib><title>Dynamics of arc phenomena at closure of electrical contacts in vacuum circuit breakers</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Dynamic phenomena accompanying electrical contact closure in vacuum circuit breakers are considered as consecutive stages, including breakdown, touch, compression, restitution, bridging, and arcing at bouncing. The hybrid mathematical model is elaborated to describe dynamics of the arc and forces acting in the contact gap. The model uses experimental oscillograms of current, voltage and contact displacement and nonlinear equations for arc, anode and cathode temperature fields, and contact motion. Experiments are carried out using a standard vacuum circuit breaker with laser sensors for the measurement of contact gap. The special difference path method is applied to take into account oscillations of a fixed contact. The axisymmetric Stefan problem with two free boundaries corresponding to melting and evaporation interfaces is solved to find dynamics of contact evaporation. It is shown theoretically and confirmed experimentally that in the range of high currents, the force of metallic vapor pressure at arcing in vacuum is comparable with magnetic repulsion force and should be taken into consideration. Two mechanisms of vapor pressure formation and evolution are discussed, which occur due to explosion of micro-asperities at contact touch or due to arcing after bridge rupture at contact bouncing.</description><subject>Anodes</subject><subject>Bouncing</subject><subject>Cathodes</subject><subject>Circuit breakers</subject><subject>Circuits</subject><subject>Contacts</subject><subject>Dynamics</subject><subject>Dynamics of closure and opening</subject><subject>Electric currents</subject><subject>Evaporation</subject><subject>Explosive forming</subject><subject>Mathematical model</subject><subject>mathematical modeling</subject><subject>Mathematical models</subject><subject>metallic vapor pressure</subject><subject>Nonlinear equations</subject><subject>Temperature sensors</subject><subject>Touch</subject><subject>Vacuum arcs</subject><subject>Vacuum breakdown</subject><subject>vacuum circuit breaker</subject><subject>Vacuum technology</subject><subject>Vapor pressure</subject><subject>Voltage</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1LxDAQhoMouK6ePXgJHsRLdydJ0yZH8RsWFFy9lnR2il37sSatsP_elhUED8LAHOZ5Xxgexk4FzIQAO18-v8wkgJ4ZnWhp9thEWGUjq1K9zyYAVkXKCHXIjkJYA4hYg5ywt5tt4-oSA28L7jzyzTs1bU2N467jWLWh9zTeqCLsfImu4tg2ncMu8LLhXw77vuZYeuzLjuee3Af5cMwOClcFOvnZU_Z6d7u8fogWT_eP11eLCJWWXaTiGNPYYZqnZCwYpGSllSarXB4nEiHOKXaFpELkBFAkmFitCsoTrU0qV2rKLna9G99-9hS6rC4DUlW5hto-ZNIMj2uZDODlv6AAJRTAOFN2_gddt71vhjcyYbVIhVZj33wHoW9D8FRkG1_Wzm-Hpmz0kQ0-stFHtvMxJM52iZKIfmktjDWgvgE2cIYs</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Kharin, S.N.</creator><creator>Nouri, H.</creator><creator>Amft, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20051001</creationdate><title>Dynamics of arc phenomena at closure of electrical contacts in vacuum circuit breakers</title><author>Kharin, S.N. ; Nouri, H. ; Amft, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-344c74ac7b7e8908ce6d535e93ab462c04be4af2ef1be00f6c6953feb655872d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anodes</topic><topic>Bouncing</topic><topic>Cathodes</topic><topic>Circuit breakers</topic><topic>Circuits</topic><topic>Contacts</topic><topic>Dynamics</topic><topic>Dynamics of closure and opening</topic><topic>Electric currents</topic><topic>Evaporation</topic><topic>Explosive forming</topic><topic>Mathematical model</topic><topic>mathematical modeling</topic><topic>Mathematical models</topic><topic>metallic vapor pressure</topic><topic>Nonlinear equations</topic><topic>Temperature sensors</topic><topic>Touch</topic><topic>Vacuum arcs</topic><topic>Vacuum breakdown</topic><topic>vacuum circuit breaker</topic><topic>Vacuum technology</topic><topic>Vapor pressure</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kharin, S.N.</creatorcontrib><creatorcontrib>Nouri, H.</creatorcontrib><creatorcontrib>Amft, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kharin, S.N.</au><au>Nouri, H.</au><au>Amft, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of arc phenomena at closure of electrical contacts in vacuum circuit breakers</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2005-10-01</date><risdate>2005</risdate><volume>33</volume><issue>5</issue><spage>1576</spage><epage>1581</epage><pages>1576-1581</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Dynamic phenomena accompanying electrical contact closure in vacuum circuit breakers are considered as consecutive stages, including breakdown, touch, compression, restitution, bridging, and arcing at bouncing. The hybrid mathematical model is elaborated to describe dynamics of the arc and forces acting in the contact gap. The model uses experimental oscillograms of current, voltage and contact displacement and nonlinear equations for arc, anode and cathode temperature fields, and contact motion. Experiments are carried out using a standard vacuum circuit breaker with laser sensors for the measurement of contact gap. The special difference path method is applied to take into account oscillations of a fixed contact. The axisymmetric Stefan problem with two free boundaries corresponding to melting and evaporation interfaces is solved to find dynamics of contact evaporation. It is shown theoretically and confirmed experimentally that in the range of high currents, the force of metallic vapor pressure at arcing in vacuum is comparable with magnetic repulsion force and should be taken into consideration. Two mechanisms of vapor pressure formation and evolution are discussed, which occur due to explosion of micro-asperities at contact touch or due to arcing after bridge rupture at contact bouncing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2005.856528</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2005-10, Vol.33 (5), p.1576-1581
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_miscellaneous_1031300300
source IEEE Electronic Library (IEL)
subjects Anodes
Bouncing
Cathodes
Circuit breakers
Circuits
Contacts
Dynamics
Dynamics of closure and opening
Electric currents
Evaporation
Explosive forming
Mathematical model
mathematical modeling
Mathematical models
metallic vapor pressure
Nonlinear equations
Temperature sensors
Touch
Vacuum arcs
Vacuum breakdown
vacuum circuit breaker
Vacuum technology
Vapor pressure
Voltage
title Dynamics of arc phenomena at closure of electrical contacts in vacuum circuit breakers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20arc%20phenomena%20at%20closure%20of%20electrical%20contacts%20in%20vacuum%20circuit%20breakers&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Kharin,%20S.N.&rft.date=2005-10-01&rft.volume=33&rft.issue=5&rft.spage=1576&rft.epage=1581&rft.pages=1576-1581&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2005.856528&rft_dat=%3Cproquest_RIE%3E917236651%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195171536&rft_id=info:pmid/&rft_ieee_id=1518980&rfr_iscdi=true