Dynamics of arc phenomena at closure of electrical contacts in vacuum circuit breakers
Dynamic phenomena accompanying electrical contact closure in vacuum circuit breakers are considered as consecutive stages, including breakdown, touch, compression, restitution, bridging, and arcing at bouncing. The hybrid mathematical model is elaborated to describe dynamics of the arc and forces ac...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2005-10, Vol.33 (5), p.1576-1581 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1581 |
---|---|
container_issue | 5 |
container_start_page | 1576 |
container_title | IEEE transactions on plasma science |
container_volume | 33 |
creator | Kharin, S.N. Nouri, H. Amft, D. |
description | Dynamic phenomena accompanying electrical contact closure in vacuum circuit breakers are considered as consecutive stages, including breakdown, touch, compression, restitution, bridging, and arcing at bouncing. The hybrid mathematical model is elaborated to describe dynamics of the arc and forces acting in the contact gap. The model uses experimental oscillograms of current, voltage and contact displacement and nonlinear equations for arc, anode and cathode temperature fields, and contact motion. Experiments are carried out using a standard vacuum circuit breaker with laser sensors for the measurement of contact gap. The special difference path method is applied to take into account oscillations of a fixed contact. The axisymmetric Stefan problem with two free boundaries corresponding to melting and evaporation interfaces is solved to find dynamics of contact evaporation. It is shown theoretically and confirmed experimentally that in the range of high currents, the force of metallic vapor pressure at arcing in vacuum is comparable with magnetic repulsion force and should be taken into consideration. Two mechanisms of vapor pressure formation and evolution are discussed, which occur due to explosion of micro-asperities at contact touch or due to arcing after bridge rupture at contact bouncing. |
doi_str_mv | 10.1109/TPS.2005.856528 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031300300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1518980</ieee_id><sourcerecordid>917236651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-344c74ac7b7e8908ce6d535e93ab462c04be4af2ef1be00f6c6953feb655872d3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouK6ePXgJHsRLdydJ0yZH8RsWFFy9lnR2il37sSatsP_elhUED8LAHOZ5Xxgexk4FzIQAO18-v8wkgJ4ZnWhp9thEWGUjq1K9zyYAVkXKCHXIjkJYA4hYg5ywt5tt4-oSA28L7jzyzTs1bU2N467jWLWh9zTeqCLsfImu4tg2ncMu8LLhXw77vuZYeuzLjuee3Af5cMwOClcFOvnZU_Z6d7u8fogWT_eP11eLCJWWXaTiGNPYYZqnZCwYpGSllSarXB4nEiHOKXaFpELkBFAkmFitCsoTrU0qV2rKLna9G99-9hS6rC4DUlW5hto-ZNIMj2uZDODlv6AAJRTAOFN2_gddt71vhjcyYbVIhVZj33wHoW9D8FRkG1_Wzm-Hpmz0kQ0-stFHtvMxJM52iZKIfmktjDWgvgE2cIYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195171536</pqid></control><display><type>article</type><title>Dynamics of arc phenomena at closure of electrical contacts in vacuum circuit breakers</title><source>IEEE Electronic Library (IEL)</source><creator>Kharin, S.N. ; Nouri, H. ; Amft, D.</creator><creatorcontrib>Kharin, S.N. ; Nouri, H. ; Amft, D.</creatorcontrib><description>Dynamic phenomena accompanying electrical contact closure in vacuum circuit breakers are considered as consecutive stages, including breakdown, touch, compression, restitution, bridging, and arcing at bouncing. The hybrid mathematical model is elaborated to describe dynamics of the arc and forces acting in the contact gap. The model uses experimental oscillograms of current, voltage and contact displacement and nonlinear equations for arc, anode and cathode temperature fields, and contact motion. Experiments are carried out using a standard vacuum circuit breaker with laser sensors for the measurement of contact gap. The special difference path method is applied to take into account oscillations of a fixed contact. The axisymmetric Stefan problem with two free boundaries corresponding to melting and evaporation interfaces is solved to find dynamics of contact evaporation. It is shown theoretically and confirmed experimentally that in the range of high currents, the force of metallic vapor pressure at arcing in vacuum is comparable with magnetic repulsion force and should be taken into consideration. Two mechanisms of vapor pressure formation and evolution are discussed, which occur due to explosion of micro-asperities at contact touch or due to arcing after bridge rupture at contact bouncing.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2005.856528</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Bouncing ; Cathodes ; Circuit breakers ; Circuits ; Contacts ; Dynamics ; Dynamics of closure and opening ; Electric currents ; Evaporation ; Explosive forming ; Mathematical model ; mathematical modeling ; Mathematical models ; metallic vapor pressure ; Nonlinear equations ; Temperature sensors ; Touch ; Vacuum arcs ; Vacuum breakdown ; vacuum circuit breaker ; Vacuum technology ; Vapor pressure ; Voltage</subject><ispartof>IEEE transactions on plasma science, 2005-10, Vol.33 (5), p.1576-1581</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-344c74ac7b7e8908ce6d535e93ab462c04be4af2ef1be00f6c6953feb655872d3</citedby><cites>FETCH-LOGICAL-c352t-344c74ac7b7e8908ce6d535e93ab462c04be4af2ef1be00f6c6953feb655872d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1518980$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1518980$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kharin, S.N.</creatorcontrib><creatorcontrib>Nouri, H.</creatorcontrib><creatorcontrib>Amft, D.</creatorcontrib><title>Dynamics of arc phenomena at closure of electrical contacts in vacuum circuit breakers</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Dynamic phenomena accompanying electrical contact closure in vacuum circuit breakers are considered as consecutive stages, including breakdown, touch, compression, restitution, bridging, and arcing at bouncing. The hybrid mathematical model is elaborated to describe dynamics of the arc and forces acting in the contact gap. The model uses experimental oscillograms of current, voltage and contact displacement and nonlinear equations for arc, anode and cathode temperature fields, and contact motion. Experiments are carried out using a standard vacuum circuit breaker with laser sensors for the measurement of contact gap. The special difference path method is applied to take into account oscillations of a fixed contact. The axisymmetric Stefan problem with two free boundaries corresponding to melting and evaporation interfaces is solved to find dynamics of contact evaporation. It is shown theoretically and confirmed experimentally that in the range of high currents, the force of metallic vapor pressure at arcing in vacuum is comparable with magnetic repulsion force and should be taken into consideration. Two mechanisms of vapor pressure formation and evolution are discussed, which occur due to explosion of micro-asperities at contact touch or due to arcing after bridge rupture at contact bouncing.</description><subject>Anodes</subject><subject>Bouncing</subject><subject>Cathodes</subject><subject>Circuit breakers</subject><subject>Circuits</subject><subject>Contacts</subject><subject>Dynamics</subject><subject>Dynamics of closure and opening</subject><subject>Electric currents</subject><subject>Evaporation</subject><subject>Explosive forming</subject><subject>Mathematical model</subject><subject>mathematical modeling</subject><subject>Mathematical models</subject><subject>metallic vapor pressure</subject><subject>Nonlinear equations</subject><subject>Temperature sensors</subject><subject>Touch</subject><subject>Vacuum arcs</subject><subject>Vacuum breakdown</subject><subject>vacuum circuit breaker</subject><subject>Vacuum technology</subject><subject>Vapor pressure</subject><subject>Voltage</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1LxDAQhoMouK6ePXgJHsRLdydJ0yZH8RsWFFy9lnR2il37sSatsP_elhUED8LAHOZ5Xxgexk4FzIQAO18-v8wkgJ4ZnWhp9thEWGUjq1K9zyYAVkXKCHXIjkJYA4hYg5ywt5tt4-oSA28L7jzyzTs1bU2N467jWLWh9zTeqCLsfImu4tg2ncMu8LLhXw77vuZYeuzLjuee3Af5cMwOClcFOvnZU_Z6d7u8fogWT_eP11eLCJWWXaTiGNPYYZqnZCwYpGSllSarXB4nEiHOKXaFpELkBFAkmFitCsoTrU0qV2rKLna9G99-9hS6rC4DUlW5hto-ZNIMj2uZDODlv6AAJRTAOFN2_gddt71vhjcyYbVIhVZj33wHoW9D8FRkG1_Wzm-Hpmz0kQ0-stFHtvMxJM52iZKIfmktjDWgvgE2cIYs</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Kharin, S.N.</creator><creator>Nouri, H.</creator><creator>Amft, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20051001</creationdate><title>Dynamics of arc phenomena at closure of electrical contacts in vacuum circuit breakers</title><author>Kharin, S.N. ; Nouri, H. ; Amft, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-344c74ac7b7e8908ce6d535e93ab462c04be4af2ef1be00f6c6953feb655872d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anodes</topic><topic>Bouncing</topic><topic>Cathodes</topic><topic>Circuit breakers</topic><topic>Circuits</topic><topic>Contacts</topic><topic>Dynamics</topic><topic>Dynamics of closure and opening</topic><topic>Electric currents</topic><topic>Evaporation</topic><topic>Explosive forming</topic><topic>Mathematical model</topic><topic>mathematical modeling</topic><topic>Mathematical models</topic><topic>metallic vapor pressure</topic><topic>Nonlinear equations</topic><topic>Temperature sensors</topic><topic>Touch</topic><topic>Vacuum arcs</topic><topic>Vacuum breakdown</topic><topic>vacuum circuit breaker</topic><topic>Vacuum technology</topic><topic>Vapor pressure</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kharin, S.N.</creatorcontrib><creatorcontrib>Nouri, H.</creatorcontrib><creatorcontrib>Amft, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kharin, S.N.</au><au>Nouri, H.</au><au>Amft, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of arc phenomena at closure of electrical contacts in vacuum circuit breakers</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2005-10-01</date><risdate>2005</risdate><volume>33</volume><issue>5</issue><spage>1576</spage><epage>1581</epage><pages>1576-1581</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Dynamic phenomena accompanying electrical contact closure in vacuum circuit breakers are considered as consecutive stages, including breakdown, touch, compression, restitution, bridging, and arcing at bouncing. The hybrid mathematical model is elaborated to describe dynamics of the arc and forces acting in the contact gap. The model uses experimental oscillograms of current, voltage and contact displacement and nonlinear equations for arc, anode and cathode temperature fields, and contact motion. Experiments are carried out using a standard vacuum circuit breaker with laser sensors for the measurement of contact gap. The special difference path method is applied to take into account oscillations of a fixed contact. The axisymmetric Stefan problem with two free boundaries corresponding to melting and evaporation interfaces is solved to find dynamics of contact evaporation. It is shown theoretically and confirmed experimentally that in the range of high currents, the force of metallic vapor pressure at arcing in vacuum is comparable with magnetic repulsion force and should be taken into consideration. Two mechanisms of vapor pressure formation and evolution are discussed, which occur due to explosion of micro-asperities at contact touch or due to arcing after bridge rupture at contact bouncing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2005.856528</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2005-10, Vol.33 (5), p.1576-1581 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031300300 |
source | IEEE Electronic Library (IEL) |
subjects | Anodes Bouncing Cathodes Circuit breakers Circuits Contacts Dynamics Dynamics of closure and opening Electric currents Evaporation Explosive forming Mathematical model mathematical modeling Mathematical models metallic vapor pressure Nonlinear equations Temperature sensors Touch Vacuum arcs Vacuum breakdown vacuum circuit breaker Vacuum technology Vapor pressure Voltage |
title | Dynamics of arc phenomena at closure of electrical contacts in vacuum circuit breakers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20arc%20phenomena%20at%20closure%20of%20electrical%20contacts%20in%20vacuum%20circuit%20breakers&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Kharin,%20S.N.&rft.date=2005-10-01&rft.volume=33&rft.issue=5&rft.spage=1576&rft.epage=1581&rft.pages=1576-1581&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2005.856528&rft_dat=%3Cproquest_RIE%3E917236651%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195171536&rft_id=info:pmid/&rft_ieee_id=1518980&rfr_iscdi=true |