Stability guaranteed teleoperation: an adaptive motion/force control approach

An adaptive motion/force controller is developed for unilateral or bilateral teleoperation systems. The method can be applied in both position and rate control modes, with arbitrary motion or force scaling. No acceleration measurements are required. Nonlinear rigid-body dynamics of the master and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2000-11, Vol.45 (11), p.1951-1969
Hauptverfasser: Wen-Hong Zhu, Salcudean, S.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1969
container_issue 11
container_start_page 1951
container_title IEEE transactions on automatic control
container_volume 45
creator Wen-Hong Zhu
Salcudean, S.E.
description An adaptive motion/force controller is developed for unilateral or bilateral teleoperation systems. The method can be applied in both position and rate control modes, with arbitrary motion or force scaling. No acceleration measurements are required. Nonlinear rigid-body dynamics of the master and the slave robots are considered. A model of the flexible or rigid environment is incorporated into the dynamics of the slave, while a model of the human operator is incorporated into the dynamics of the master. The master and the slave are subject to independent adaptive motion/force controllers that assume parameter uncertainty bounds. Each parameter is independently updated within its known lower and upper bounds. The states of the master (slave) are sent to the slave (master) as motion/force tracking commands instead of control actions (efforts and/or flows). Under the modeling assumptions for the human operator and the environment, the proposed teleoperation control scheme is L/sub 2/ and L/sub /spl infin// stable in both free motion and flexible or rigid contact motion and is robust against time delays. The controlled master-slave system behaves essentially as a linearly damped free-floating mass. If the parameter estimates converge, the environment impedance and the impedance transmitted to the master differ only by a control-parameter dependent mass/damper term. Asymptotic motion (velocity/position) tracking and force tracking with zero steady-state error are achieved. Experimental results are presented in support of the analysis.
doi_str_mv 10.1109/9.887620
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031299969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>887620</ieee_id><sourcerecordid>2453790391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-b3c674d016ff43fbc5185c9bf8b0c284da382f7724325955a186fcf644c1b8bd3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK6CZ0_Fk5eu-WjaiTdZ_IIVD-q5pOlEu3SbmmSF_fdm2UXB0zAzD8-8DCHnjM4Yo-pazQCqktMDMmFSQs4lF4dkQimDXHEoj8lJCMvUlkXBJuT5Neqm67u4yT7W2ushIrZZxB7diF7Hzg03mR4y3eoxdt-Yrdx2dm2dN5gZN0Tv-kyPo3fafJ6SI6v7gGf7OiXv93dv88d88fLwNL9d5EZUNOaNMGVVtCmDtYWwjZEMpFGNhYYaDkWrBXBbVbwQXCopNYPSGpsSG9ZA04opudp509mvNYZYr7pgsO_1gG4dakYF40qpUiX08h-6dGs_pHQ1gAIOyf3nM96F4NHWo-9W2m-Sqd6-tVb17q0JvdihHSL-YvvlD6jLci4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889828186</pqid></control><display><type>article</type><title>Stability guaranteed teleoperation: an adaptive motion/force control approach</title><source>IEEE Electronic Library Online</source><creator>Wen-Hong Zhu ; Salcudean, S.E.</creator><creatorcontrib>Wen-Hong Zhu ; Salcudean, S.E.</creatorcontrib><description>An adaptive motion/force controller is developed for unilateral or bilateral teleoperation systems. The method can be applied in both position and rate control modes, with arbitrary motion or force scaling. No acceleration measurements are required. Nonlinear rigid-body dynamics of the master and the slave robots are considered. A model of the flexible or rigid environment is incorporated into the dynamics of the slave, while a model of the human operator is incorporated into the dynamics of the master. The master and the slave are subject to independent adaptive motion/force controllers that assume parameter uncertainty bounds. Each parameter is independently updated within its known lower and upper bounds. The states of the master (slave) are sent to the slave (master) as motion/force tracking commands instead of control actions (efforts and/or flows). Under the modeling assumptions for the human operator and the environment, the proposed teleoperation control scheme is L/sub 2/ and L/sub /spl infin// stable in both free motion and flexible or rigid contact motion and is robust against time delays. The controlled master-slave system behaves essentially as a linearly damped free-floating mass. If the parameter estimates converge, the environment impedance and the impedance transmitted to the master differ only by a control-parameter dependent mass/damper term. Asymptotic motion (velocity/position) tracking and force tracking with zero steady-state error are achieved. Experimental results are presented in support of the analysis.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.887620</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive control systems ; Control systems ; Force control ; Humans ; Impedance ; Master-slave ; Mathematical models ; Motion control ; Nonlinear dynamics ; Operators ; Programmable control ; Rigid-body dynamics ; Robots ; Stability ; Tracking ; Weight control</subject><ispartof>IEEE transactions on automatic control, 2000-11, Vol.45 (11), p.1951-1969</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-b3c674d016ff43fbc5185c9bf8b0c284da382f7724325955a186fcf644c1b8bd3</citedby><cites>FETCH-LOGICAL-c370t-b3c674d016ff43fbc5185c9bf8b0c284da382f7724325955a186fcf644c1b8bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/887620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/887620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wen-Hong Zhu</creatorcontrib><creatorcontrib>Salcudean, S.E.</creatorcontrib><title>Stability guaranteed teleoperation: an adaptive motion/force control approach</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>An adaptive motion/force controller is developed for unilateral or bilateral teleoperation systems. The method can be applied in both position and rate control modes, with arbitrary motion or force scaling. No acceleration measurements are required. Nonlinear rigid-body dynamics of the master and the slave robots are considered. A model of the flexible or rigid environment is incorporated into the dynamics of the slave, while a model of the human operator is incorporated into the dynamics of the master. The master and the slave are subject to independent adaptive motion/force controllers that assume parameter uncertainty bounds. Each parameter is independently updated within its known lower and upper bounds. The states of the master (slave) are sent to the slave (master) as motion/force tracking commands instead of control actions (efforts and/or flows). Under the modeling assumptions for the human operator and the environment, the proposed teleoperation control scheme is L/sub 2/ and L/sub /spl infin// stable in both free motion and flexible or rigid contact motion and is robust against time delays. The controlled master-slave system behaves essentially as a linearly damped free-floating mass. If the parameter estimates converge, the environment impedance and the impedance transmitted to the master differ only by a control-parameter dependent mass/damper term. Asymptotic motion (velocity/position) tracking and force tracking with zero steady-state error are achieved. Experimental results are presented in support of the analysis.</description><subject>Adaptive control</subject><subject>Adaptive control systems</subject><subject>Control systems</subject><subject>Force control</subject><subject>Humans</subject><subject>Impedance</subject><subject>Master-slave</subject><subject>Mathematical models</subject><subject>Motion control</subject><subject>Nonlinear dynamics</subject><subject>Operators</subject><subject>Programmable control</subject><subject>Rigid-body dynamics</subject><subject>Robots</subject><subject>Stability</subject><subject>Tracking</subject><subject>Weight control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMouK6CZ0_Fk5eu-WjaiTdZ_IIVD-q5pOlEu3SbmmSF_fdm2UXB0zAzD8-8DCHnjM4Yo-pazQCqktMDMmFSQs4lF4dkQimDXHEoj8lJCMvUlkXBJuT5Neqm67u4yT7W2ushIrZZxB7diF7Hzg03mR4y3eoxdt-Yrdx2dm2dN5gZN0Tv-kyPo3fafJ6SI6v7gGf7OiXv93dv88d88fLwNL9d5EZUNOaNMGVVtCmDtYWwjZEMpFGNhYYaDkWrBXBbVbwQXCopNYPSGpsSG9ZA04opudp509mvNYZYr7pgsO_1gG4dakYF40qpUiX08h-6dGs_pHQ1gAIOyf3nM96F4NHWo-9W2m-Sqd6-tVb17q0JvdihHSL-YvvlD6jLci4</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Wen-Hong Zhu</creator><creator>Salcudean, S.E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20001101</creationdate><title>Stability guaranteed teleoperation: an adaptive motion/force control approach</title><author>Wen-Hong Zhu ; Salcudean, S.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-b3c674d016ff43fbc5185c9bf8b0c284da382f7724325955a186fcf644c1b8bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive control</topic><topic>Adaptive control systems</topic><topic>Control systems</topic><topic>Force control</topic><topic>Humans</topic><topic>Impedance</topic><topic>Master-slave</topic><topic>Mathematical models</topic><topic>Motion control</topic><topic>Nonlinear dynamics</topic><topic>Operators</topic><topic>Programmable control</topic><topic>Rigid-body dynamics</topic><topic>Robots</topic><topic>Stability</topic><topic>Tracking</topic><topic>Weight control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen-Hong Zhu</creatorcontrib><creatorcontrib>Salcudean, S.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen-Hong Zhu</au><au>Salcudean, S.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability guaranteed teleoperation: an adaptive motion/force control approach</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2000-11-01</date><risdate>2000</risdate><volume>45</volume><issue>11</issue><spage>1951</spage><epage>1969</epage><pages>1951-1969</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>An adaptive motion/force controller is developed for unilateral or bilateral teleoperation systems. The method can be applied in both position and rate control modes, with arbitrary motion or force scaling. No acceleration measurements are required. Nonlinear rigid-body dynamics of the master and the slave robots are considered. A model of the flexible or rigid environment is incorporated into the dynamics of the slave, while a model of the human operator is incorporated into the dynamics of the master. The master and the slave are subject to independent adaptive motion/force controllers that assume parameter uncertainty bounds. Each parameter is independently updated within its known lower and upper bounds. The states of the master (slave) are sent to the slave (master) as motion/force tracking commands instead of control actions (efforts and/or flows). Under the modeling assumptions for the human operator and the environment, the proposed teleoperation control scheme is L/sub 2/ and L/sub /spl infin// stable in both free motion and flexible or rigid contact motion and is robust against time delays. The controlled master-slave system behaves essentially as a linearly damped free-floating mass. If the parameter estimates converge, the environment impedance and the impedance transmitted to the master differ only by a control-parameter dependent mass/damper term. Asymptotic motion (velocity/position) tracking and force tracking with zero steady-state error are achieved. Experimental results are presented in support of the analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/9.887620</doi><tpages>19</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2000-11, Vol.45 (11), p.1951-1969
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_1031299969
source IEEE Electronic Library Online
subjects Adaptive control
Adaptive control systems
Control systems
Force control
Humans
Impedance
Master-slave
Mathematical models
Motion control
Nonlinear dynamics
Operators
Programmable control
Rigid-body dynamics
Robots
Stability
Tracking
Weight control
title Stability guaranteed teleoperation: an adaptive motion/force control approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20guaranteed%20teleoperation:%20an%20adaptive%20motion/force%20control%20approach&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Wen-Hong%20Zhu&rft.date=2000-11-01&rft.volume=45&rft.issue=11&rft.spage=1951&rft.epage=1969&rft.pages=1951-1969&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.887620&rft_dat=%3Cproquest_RIE%3E2453790391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889828186&rft_id=info:pmid/&rft_ieee_id=887620&rfr_iscdi=true