Stability guaranteed teleoperation: an adaptive motion/force control approach
An adaptive motion/force controller is developed for unilateral or bilateral teleoperation systems. The method can be applied in both position and rate control modes, with arbitrary motion or force scaling. No acceleration measurements are required. Nonlinear rigid-body dynamics of the master and th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2000-11, Vol.45 (11), p.1951-1969 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1969 |
---|---|
container_issue | 11 |
container_start_page | 1951 |
container_title | IEEE transactions on automatic control |
container_volume | 45 |
creator | Wen-Hong Zhu Salcudean, S.E. |
description | An adaptive motion/force controller is developed for unilateral or bilateral teleoperation systems. The method can be applied in both position and rate control modes, with arbitrary motion or force scaling. No acceleration measurements are required. Nonlinear rigid-body dynamics of the master and the slave robots are considered. A model of the flexible or rigid environment is incorporated into the dynamics of the slave, while a model of the human operator is incorporated into the dynamics of the master. The master and the slave are subject to independent adaptive motion/force controllers that assume parameter uncertainty bounds. Each parameter is independently updated within its known lower and upper bounds. The states of the master (slave) are sent to the slave (master) as motion/force tracking commands instead of control actions (efforts and/or flows). Under the modeling assumptions for the human operator and the environment, the proposed teleoperation control scheme is L/sub 2/ and L/sub /spl infin// stable in both free motion and flexible or rigid contact motion and is robust against time delays. The controlled master-slave system behaves essentially as a linearly damped free-floating mass. If the parameter estimates converge, the environment impedance and the impedance transmitted to the master differ only by a control-parameter dependent mass/damper term. Asymptotic motion (velocity/position) tracking and force tracking with zero steady-state error are achieved. Experimental results are presented in support of the analysis. |
doi_str_mv | 10.1109/9.887620 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031299969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>887620</ieee_id><sourcerecordid>2453790391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-b3c674d016ff43fbc5185c9bf8b0c284da382f7724325955a186fcf644c1b8bd3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK6CZ0_Fk5eu-WjaiTdZ_IIVD-q5pOlEu3SbmmSF_fdm2UXB0zAzD8-8DCHnjM4Yo-pazQCqktMDMmFSQs4lF4dkQimDXHEoj8lJCMvUlkXBJuT5Neqm67u4yT7W2ushIrZZxB7diF7Hzg03mR4y3eoxdt-Yrdx2dm2dN5gZN0Tv-kyPo3fafJ6SI6v7gGf7OiXv93dv88d88fLwNL9d5EZUNOaNMGVVtCmDtYWwjZEMpFGNhYYaDkWrBXBbVbwQXCopNYPSGpsSG9ZA04opudp509mvNYZYr7pgsO_1gG4dakYF40qpUiX08h-6dGs_pHQ1gAIOyf3nM96F4NHWo-9W2m-Sqd6-tVb17q0JvdihHSL-YvvlD6jLci4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889828186</pqid></control><display><type>article</type><title>Stability guaranteed teleoperation: an adaptive motion/force control approach</title><source>IEEE Electronic Library Online</source><creator>Wen-Hong Zhu ; Salcudean, S.E.</creator><creatorcontrib>Wen-Hong Zhu ; Salcudean, S.E.</creatorcontrib><description>An adaptive motion/force controller is developed for unilateral or bilateral teleoperation systems. The method can be applied in both position and rate control modes, with arbitrary motion or force scaling. No acceleration measurements are required. Nonlinear rigid-body dynamics of the master and the slave robots are considered. A model of the flexible or rigid environment is incorporated into the dynamics of the slave, while a model of the human operator is incorporated into the dynamics of the master. The master and the slave are subject to independent adaptive motion/force controllers that assume parameter uncertainty bounds. Each parameter is independently updated within its known lower and upper bounds. The states of the master (slave) are sent to the slave (master) as motion/force tracking commands instead of control actions (efforts and/or flows). Under the modeling assumptions for the human operator and the environment, the proposed teleoperation control scheme is L/sub 2/ and L/sub /spl infin// stable in both free motion and flexible or rigid contact motion and is robust against time delays. The controlled master-slave system behaves essentially as a linearly damped free-floating mass. If the parameter estimates converge, the environment impedance and the impedance transmitted to the master differ only by a control-parameter dependent mass/damper term. Asymptotic motion (velocity/position) tracking and force tracking with zero steady-state error are achieved. Experimental results are presented in support of the analysis.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.887620</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive control systems ; Control systems ; Force control ; Humans ; Impedance ; Master-slave ; Mathematical models ; Motion control ; Nonlinear dynamics ; Operators ; Programmable control ; Rigid-body dynamics ; Robots ; Stability ; Tracking ; Weight control</subject><ispartof>IEEE transactions on automatic control, 2000-11, Vol.45 (11), p.1951-1969</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-b3c674d016ff43fbc5185c9bf8b0c284da382f7724325955a186fcf644c1b8bd3</citedby><cites>FETCH-LOGICAL-c370t-b3c674d016ff43fbc5185c9bf8b0c284da382f7724325955a186fcf644c1b8bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/887620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/887620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wen-Hong Zhu</creatorcontrib><creatorcontrib>Salcudean, S.E.</creatorcontrib><title>Stability guaranteed teleoperation: an adaptive motion/force control approach</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>An adaptive motion/force controller is developed for unilateral or bilateral teleoperation systems. The method can be applied in both position and rate control modes, with arbitrary motion or force scaling. No acceleration measurements are required. Nonlinear rigid-body dynamics of the master and the slave robots are considered. A model of the flexible or rigid environment is incorporated into the dynamics of the slave, while a model of the human operator is incorporated into the dynamics of the master. The master and the slave are subject to independent adaptive motion/force controllers that assume parameter uncertainty bounds. Each parameter is independently updated within its known lower and upper bounds. The states of the master (slave) are sent to the slave (master) as motion/force tracking commands instead of control actions (efforts and/or flows). Under the modeling assumptions for the human operator and the environment, the proposed teleoperation control scheme is L/sub 2/ and L/sub /spl infin// stable in both free motion and flexible or rigid contact motion and is robust against time delays. The controlled master-slave system behaves essentially as a linearly damped free-floating mass. If the parameter estimates converge, the environment impedance and the impedance transmitted to the master differ only by a control-parameter dependent mass/damper term. Asymptotic motion (velocity/position) tracking and force tracking with zero steady-state error are achieved. Experimental results are presented in support of the analysis.</description><subject>Adaptive control</subject><subject>Adaptive control systems</subject><subject>Control systems</subject><subject>Force control</subject><subject>Humans</subject><subject>Impedance</subject><subject>Master-slave</subject><subject>Mathematical models</subject><subject>Motion control</subject><subject>Nonlinear dynamics</subject><subject>Operators</subject><subject>Programmable control</subject><subject>Rigid-body dynamics</subject><subject>Robots</subject><subject>Stability</subject><subject>Tracking</subject><subject>Weight control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMouK6CZ0_Fk5eu-WjaiTdZ_IIVD-q5pOlEu3SbmmSF_fdm2UXB0zAzD8-8DCHnjM4Yo-pazQCqktMDMmFSQs4lF4dkQimDXHEoj8lJCMvUlkXBJuT5Neqm67u4yT7W2ushIrZZxB7diF7Hzg03mR4y3eoxdt-Yrdx2dm2dN5gZN0Tv-kyPo3fafJ6SI6v7gGf7OiXv93dv88d88fLwNL9d5EZUNOaNMGVVtCmDtYWwjZEMpFGNhYYaDkWrBXBbVbwQXCopNYPSGpsSG9ZA04opudp509mvNYZYr7pgsO_1gG4dakYF40qpUiX08h-6dGs_pHQ1gAIOyf3nM96F4NHWo-9W2m-Sqd6-tVb17q0JvdihHSL-YvvlD6jLci4</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Wen-Hong Zhu</creator><creator>Salcudean, S.E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20001101</creationdate><title>Stability guaranteed teleoperation: an adaptive motion/force control approach</title><author>Wen-Hong Zhu ; Salcudean, S.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-b3c674d016ff43fbc5185c9bf8b0c284da382f7724325955a186fcf644c1b8bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive control</topic><topic>Adaptive control systems</topic><topic>Control systems</topic><topic>Force control</topic><topic>Humans</topic><topic>Impedance</topic><topic>Master-slave</topic><topic>Mathematical models</topic><topic>Motion control</topic><topic>Nonlinear dynamics</topic><topic>Operators</topic><topic>Programmable control</topic><topic>Rigid-body dynamics</topic><topic>Robots</topic><topic>Stability</topic><topic>Tracking</topic><topic>Weight control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen-Hong Zhu</creatorcontrib><creatorcontrib>Salcudean, S.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen-Hong Zhu</au><au>Salcudean, S.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability guaranteed teleoperation: an adaptive motion/force control approach</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2000-11-01</date><risdate>2000</risdate><volume>45</volume><issue>11</issue><spage>1951</spage><epage>1969</epage><pages>1951-1969</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>An adaptive motion/force controller is developed for unilateral or bilateral teleoperation systems. The method can be applied in both position and rate control modes, with arbitrary motion or force scaling. No acceleration measurements are required. Nonlinear rigid-body dynamics of the master and the slave robots are considered. A model of the flexible or rigid environment is incorporated into the dynamics of the slave, while a model of the human operator is incorporated into the dynamics of the master. The master and the slave are subject to independent adaptive motion/force controllers that assume parameter uncertainty bounds. Each parameter is independently updated within its known lower and upper bounds. The states of the master (slave) are sent to the slave (master) as motion/force tracking commands instead of control actions (efforts and/or flows). Under the modeling assumptions for the human operator and the environment, the proposed teleoperation control scheme is L/sub 2/ and L/sub /spl infin// stable in both free motion and flexible or rigid contact motion and is robust against time delays. The controlled master-slave system behaves essentially as a linearly damped free-floating mass. If the parameter estimates converge, the environment impedance and the impedance transmitted to the master differ only by a control-parameter dependent mass/damper term. Asymptotic motion (velocity/position) tracking and force tracking with zero steady-state error are achieved. Experimental results are presented in support of the analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/9.887620</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2000-11, Vol.45 (11), p.1951-1969 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031299969 |
source | IEEE Electronic Library Online |
subjects | Adaptive control Adaptive control systems Control systems Force control Humans Impedance Master-slave Mathematical models Motion control Nonlinear dynamics Operators Programmable control Rigid-body dynamics Robots Stability Tracking Weight control |
title | Stability guaranteed teleoperation: an adaptive motion/force control approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20guaranteed%20teleoperation:%20an%20adaptive%20motion/force%20control%20approach&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Wen-Hong%20Zhu&rft.date=2000-11-01&rft.volume=45&rft.issue=11&rft.spage=1951&rft.epage=1969&rft.pages=1951-1969&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.887620&rft_dat=%3Cproquest_RIE%3E2453790391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889828186&rft_id=info:pmid/&rft_ieee_id=887620&rfr_iscdi=true |