A generalized linear model approach to designing accelerated life test experiments
Optimal experimental design practices are prominent in many applications. This paper proposes an alternate way of computing the information matrix, a key consideration in planning an accelerated life test. The generalized linear model approach allows optimal designs to be computed using iteratively...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2011-06, Vol.27 (4), p.595-607 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 607 |
---|---|
container_issue | 4 |
container_start_page | 595 |
container_title | Quality and reliability engineering international |
container_volume | 27 |
creator | Monroe, Eric M. Pan, Rong Anderson‐Cook, Christine M. Montgomery, Douglas C. Borror, Connie M. |
description | Optimal experimental design practices are prominent in many applications. This paper proposes an alternate way of computing the information matrix, a key consideration in planning an accelerated life test. The generalized linear model approach allows optimal designs to be computed using iteratively weighted least‐square solutions versus a maximum likelihood method. This approach is demonstrated with an assumed exponential distribution and allows the practitioner to observe the underlying structure of the optimal experimental design matrix and its relationship to important factors such as censoring and a nonlinear response function. Optimality criteria are discussed for both parameter estimation and prediction variance at an intended usage condition, which is typically outside the feasible accelerated test region. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/qre.1143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031295002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031295002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2983-1f5b37ba354b4eb928ae3e013e68460f65b135e142fe2782f8cec4420fe25d833</originalsourceid><addsrcrecordid>eNp1kE1LAzEQQIMoWKvgT8jRy9Z87W72WEq1QkEseg7Z7KRG0t1tskXrrzdtBU-ehoE3w-MhdEvJhBLC7rcBJpQKfoZGlFRVRgsuz9GIlEJmktDyEl3F-EFIgis5QqspXkMLQXv3DQ32rgUd8KZrwGPd96HT5h0PHW4gunXr2jXWxoBPB8MRt4AHiAOGrx6C20A7xGt0YbWPcPM7x-jtYf46W2TL58en2XSZGVZJnlGb17ysNc9FLaCumNTAgVAOhRQFsUVeU54DFcwCKyWz0oARgpG05o3kfIzuTn-T5XaXJNTGxeTmdQvdLipKOGVVnqL8oSZ0MQawqk-yOuwTpA7ZVMqmDtkSmp3QT-dh_y-nXlbzI_8DOmpuXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031295002</pqid></control><display><type>article</type><title>A generalized linear model approach to designing accelerated life test experiments</title><source>Access via Wiley Online Library</source><creator>Monroe, Eric M. ; Pan, Rong ; Anderson‐Cook, Christine M. ; Montgomery, Douglas C. ; Borror, Connie M.</creator><creatorcontrib>Monroe, Eric M. ; Pan, Rong ; Anderson‐Cook, Christine M. ; Montgomery, Douglas C. ; Borror, Connie M.</creatorcontrib><description>Optimal experimental design practices are prominent in many applications. This paper proposes an alternate way of computing the information matrix, a key consideration in planning an accelerated life test. The generalized linear model approach allows optimal designs to be computed using iteratively weighted least‐square solutions versus a maximum likelihood method. This approach is demonstrated with an assumed exponential distribution and allows the practitioner to observe the underlying structure of the optimal experimental design matrix and its relationship to important factors such as censoring and a nonlinear response function. Optimality criteria are discussed for both parameter estimation and prediction variance at an intended usage condition, which is typically outside the feasible accelerated test region. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0748-8017</identifier><identifier>ISSN: 1099-1638</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.1143</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>censoring ; design of experiments ; exponential ; optimal designs ; use condition ; Weibull distribution</subject><ispartof>Quality and reliability engineering international, 2011-06, Vol.27 (4), p.595-607</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2983-1f5b37ba354b4eb928ae3e013e68460f65b135e142fe2782f8cec4420fe25d833</citedby><cites>FETCH-LOGICAL-c2983-1f5b37ba354b4eb928ae3e013e68460f65b135e142fe2782f8cec4420fe25d833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.1143$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.1143$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Monroe, Eric M.</creatorcontrib><creatorcontrib>Pan, Rong</creatorcontrib><creatorcontrib>Anderson‐Cook, Christine M.</creatorcontrib><creatorcontrib>Montgomery, Douglas C.</creatorcontrib><creatorcontrib>Borror, Connie M.</creatorcontrib><title>A generalized linear model approach to designing accelerated life test experiments</title><title>Quality and reliability engineering international</title><description>Optimal experimental design practices are prominent in many applications. This paper proposes an alternate way of computing the information matrix, a key consideration in planning an accelerated life test. The generalized linear model approach allows optimal designs to be computed using iteratively weighted least‐square solutions versus a maximum likelihood method. This approach is demonstrated with an assumed exponential distribution and allows the practitioner to observe the underlying structure of the optimal experimental design matrix and its relationship to important factors such as censoring and a nonlinear response function. Optimality criteria are discussed for both parameter estimation and prediction variance at an intended usage condition, which is typically outside the feasible accelerated test region. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>censoring</subject><subject>design of experiments</subject><subject>exponential</subject><subject>optimal designs</subject><subject>use condition</subject><subject>Weibull distribution</subject><issn>0748-8017</issn><issn>1099-1638</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQQIMoWKvgT8jRy9Z87W72WEq1QkEseg7Z7KRG0t1tskXrrzdtBU-ehoE3w-MhdEvJhBLC7rcBJpQKfoZGlFRVRgsuz9GIlEJmktDyEl3F-EFIgis5QqspXkMLQXv3DQ32rgUd8KZrwGPd96HT5h0PHW4gunXr2jXWxoBPB8MRt4AHiAOGrx6C20A7xGt0YbWPcPM7x-jtYf46W2TL58en2XSZGVZJnlGb17ysNc9FLaCumNTAgVAOhRQFsUVeU54DFcwCKyWz0oARgpG05o3kfIzuTn-T5XaXJNTGxeTmdQvdLipKOGVVnqL8oSZ0MQawqk-yOuwTpA7ZVMqmDtkSmp3QT-dh_y-nXlbzI_8DOmpuXQ</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Monroe, Eric M.</creator><creator>Pan, Rong</creator><creator>Anderson‐Cook, Christine M.</creator><creator>Montgomery, Douglas C.</creator><creator>Borror, Connie M.</creator><general>John Wiley & Sons, Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>201106</creationdate><title>A generalized linear model approach to designing accelerated life test experiments</title><author>Monroe, Eric M. ; Pan, Rong ; Anderson‐Cook, Christine M. ; Montgomery, Douglas C. ; Borror, Connie M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2983-1f5b37ba354b4eb928ae3e013e68460f65b135e142fe2782f8cec4420fe25d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>censoring</topic><topic>design of experiments</topic><topic>exponential</topic><topic>optimal designs</topic><topic>use condition</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monroe, Eric M.</creatorcontrib><creatorcontrib>Pan, Rong</creatorcontrib><creatorcontrib>Anderson‐Cook, Christine M.</creatorcontrib><creatorcontrib>Montgomery, Douglas C.</creatorcontrib><creatorcontrib>Borror, Connie M.</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monroe, Eric M.</au><au>Pan, Rong</au><au>Anderson‐Cook, Christine M.</au><au>Montgomery, Douglas C.</au><au>Borror, Connie M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized linear model approach to designing accelerated life test experiments</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2011-06</date><risdate>2011</risdate><volume>27</volume><issue>4</issue><spage>595</spage><epage>607</epage><pages>595-607</pages><issn>0748-8017</issn><issn>1099-1638</issn><eissn>1099-1638</eissn><abstract>Optimal experimental design practices are prominent in many applications. This paper proposes an alternate way of computing the information matrix, a key consideration in planning an accelerated life test. The generalized linear model approach allows optimal designs to be computed using iteratively weighted least‐square solutions versus a maximum likelihood method. This approach is demonstrated with an assumed exponential distribution and allows the practitioner to observe the underlying structure of the optimal experimental design matrix and its relationship to important factors such as censoring and a nonlinear response function. Optimality criteria are discussed for both parameter estimation and prediction variance at an intended usage condition, which is typically outside the feasible accelerated test region. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/qre.1143</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2011-06, Vol.27 (4), p.595-607 |
issn | 0748-8017 1099-1638 1099-1638 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031295002 |
source | Access via Wiley Online Library |
subjects | censoring design of experiments exponential optimal designs use condition Weibull distribution |
title | A generalized linear model approach to designing accelerated life test experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20linear%20model%20approach%20to%20designing%20accelerated%20life%20test%20experiments&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Monroe,%20Eric%20M.&rft.date=2011-06&rft.volume=27&rft.issue=4&rft.spage=595&rft.epage=607&rft.pages=595-607&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.1143&rft_dat=%3Cproquest_cross%3E1031295002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031295002&rft_id=info:pmid/&rfr_iscdi=true |