A generalized linear model approach to designing accelerated life test experiments

Optimal experimental design practices are prominent in many applications. This paper proposes an alternate way of computing the information matrix, a key consideration in planning an accelerated life test. The generalized linear model approach allows optimal designs to be computed using iteratively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2011-06, Vol.27 (4), p.595-607
Hauptverfasser: Monroe, Eric M., Pan, Rong, Anderson‐Cook, Christine M., Montgomery, Douglas C., Borror, Connie M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 607
container_issue 4
container_start_page 595
container_title Quality and reliability engineering international
container_volume 27
creator Monroe, Eric M.
Pan, Rong
Anderson‐Cook, Christine M.
Montgomery, Douglas C.
Borror, Connie M.
description Optimal experimental design practices are prominent in many applications. This paper proposes an alternate way of computing the information matrix, a key consideration in planning an accelerated life test. The generalized linear model approach allows optimal designs to be computed using iteratively weighted least‐square solutions versus a maximum likelihood method. This approach is demonstrated with an assumed exponential distribution and allows the practitioner to observe the underlying structure of the optimal experimental design matrix and its relationship to important factors such as censoring and a nonlinear response function. Optimality criteria are discussed for both parameter estimation and prediction variance at an intended usage condition, which is typically outside the feasible accelerated test region. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/qre.1143
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031295002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031295002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2983-1f5b37ba354b4eb928ae3e013e68460f65b135e142fe2782f8cec4420fe25d833</originalsourceid><addsrcrecordid>eNp1kE1LAzEQQIMoWKvgT8jRy9Z87W72WEq1QkEseg7Z7KRG0t1tskXrrzdtBU-ehoE3w-MhdEvJhBLC7rcBJpQKfoZGlFRVRgsuz9GIlEJmktDyEl3F-EFIgis5QqspXkMLQXv3DQ32rgUd8KZrwGPd96HT5h0PHW4gunXr2jXWxoBPB8MRt4AHiAOGrx6C20A7xGt0YbWPcPM7x-jtYf46W2TL58en2XSZGVZJnlGb17ysNc9FLaCumNTAgVAOhRQFsUVeU54DFcwCKyWz0oARgpG05o3kfIzuTn-T5XaXJNTGxeTmdQvdLipKOGVVnqL8oSZ0MQawqk-yOuwTpA7ZVMqmDtkSmp3QT-dh_y-nXlbzI_8DOmpuXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031295002</pqid></control><display><type>article</type><title>A generalized linear model approach to designing accelerated life test experiments</title><source>Access via Wiley Online Library</source><creator>Monroe, Eric M. ; Pan, Rong ; Anderson‐Cook, Christine M. ; Montgomery, Douglas C. ; Borror, Connie M.</creator><creatorcontrib>Monroe, Eric M. ; Pan, Rong ; Anderson‐Cook, Christine M. ; Montgomery, Douglas C. ; Borror, Connie M.</creatorcontrib><description>Optimal experimental design practices are prominent in many applications. This paper proposes an alternate way of computing the information matrix, a key consideration in planning an accelerated life test. The generalized linear model approach allows optimal designs to be computed using iteratively weighted least‐square solutions versus a maximum likelihood method. This approach is demonstrated with an assumed exponential distribution and allows the practitioner to observe the underlying structure of the optimal experimental design matrix and its relationship to important factors such as censoring and a nonlinear response function. Optimality criteria are discussed for both parameter estimation and prediction variance at an intended usage condition, which is typically outside the feasible accelerated test region. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0748-8017</identifier><identifier>ISSN: 1099-1638</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.1143</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>censoring ; design of experiments ; exponential ; optimal designs ; use condition ; Weibull distribution</subject><ispartof>Quality and reliability engineering international, 2011-06, Vol.27 (4), p.595-607</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2983-1f5b37ba354b4eb928ae3e013e68460f65b135e142fe2782f8cec4420fe25d833</citedby><cites>FETCH-LOGICAL-c2983-1f5b37ba354b4eb928ae3e013e68460f65b135e142fe2782f8cec4420fe25d833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.1143$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.1143$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Monroe, Eric M.</creatorcontrib><creatorcontrib>Pan, Rong</creatorcontrib><creatorcontrib>Anderson‐Cook, Christine M.</creatorcontrib><creatorcontrib>Montgomery, Douglas C.</creatorcontrib><creatorcontrib>Borror, Connie M.</creatorcontrib><title>A generalized linear model approach to designing accelerated life test experiments</title><title>Quality and reliability engineering international</title><description>Optimal experimental design practices are prominent in many applications. This paper proposes an alternate way of computing the information matrix, a key consideration in planning an accelerated life test. The generalized linear model approach allows optimal designs to be computed using iteratively weighted least‐square solutions versus a maximum likelihood method. This approach is demonstrated with an assumed exponential distribution and allows the practitioner to observe the underlying structure of the optimal experimental design matrix and its relationship to important factors such as censoring and a nonlinear response function. Optimality criteria are discussed for both parameter estimation and prediction variance at an intended usage condition, which is typically outside the feasible accelerated test region. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>censoring</subject><subject>design of experiments</subject><subject>exponential</subject><subject>optimal designs</subject><subject>use condition</subject><subject>Weibull distribution</subject><issn>0748-8017</issn><issn>1099-1638</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQQIMoWKvgT8jRy9Z87W72WEq1QkEseg7Z7KRG0t1tskXrrzdtBU-ehoE3w-MhdEvJhBLC7rcBJpQKfoZGlFRVRgsuz9GIlEJmktDyEl3F-EFIgis5QqspXkMLQXv3DQ32rgUd8KZrwGPd96HT5h0PHW4gunXr2jXWxoBPB8MRt4AHiAOGrx6C20A7xGt0YbWPcPM7x-jtYf46W2TL58en2XSZGVZJnlGb17ysNc9FLaCumNTAgVAOhRQFsUVeU54DFcwCKyWz0oARgpG05o3kfIzuTn-T5XaXJNTGxeTmdQvdLipKOGVVnqL8oSZ0MQawqk-yOuwTpA7ZVMqmDtkSmp3QT-dh_y-nXlbzI_8DOmpuXQ</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Monroe, Eric M.</creator><creator>Pan, Rong</creator><creator>Anderson‐Cook, Christine M.</creator><creator>Montgomery, Douglas C.</creator><creator>Borror, Connie M.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>201106</creationdate><title>A generalized linear model approach to designing accelerated life test experiments</title><author>Monroe, Eric M. ; Pan, Rong ; Anderson‐Cook, Christine M. ; Montgomery, Douglas C. ; Borror, Connie M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2983-1f5b37ba354b4eb928ae3e013e68460f65b135e142fe2782f8cec4420fe25d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>censoring</topic><topic>design of experiments</topic><topic>exponential</topic><topic>optimal designs</topic><topic>use condition</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monroe, Eric M.</creatorcontrib><creatorcontrib>Pan, Rong</creatorcontrib><creatorcontrib>Anderson‐Cook, Christine M.</creatorcontrib><creatorcontrib>Montgomery, Douglas C.</creatorcontrib><creatorcontrib>Borror, Connie M.</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monroe, Eric M.</au><au>Pan, Rong</au><au>Anderson‐Cook, Christine M.</au><au>Montgomery, Douglas C.</au><au>Borror, Connie M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized linear model approach to designing accelerated life test experiments</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2011-06</date><risdate>2011</risdate><volume>27</volume><issue>4</issue><spage>595</spage><epage>607</epage><pages>595-607</pages><issn>0748-8017</issn><issn>1099-1638</issn><eissn>1099-1638</eissn><abstract>Optimal experimental design practices are prominent in many applications. This paper proposes an alternate way of computing the information matrix, a key consideration in planning an accelerated life test. The generalized linear model approach allows optimal designs to be computed using iteratively weighted least‐square solutions versus a maximum likelihood method. This approach is demonstrated with an assumed exponential distribution and allows the practitioner to observe the underlying structure of the optimal experimental design matrix and its relationship to important factors such as censoring and a nonlinear response function. Optimality criteria are discussed for both parameter estimation and prediction variance at an intended usage condition, which is typically outside the feasible accelerated test region. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/qre.1143</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2011-06, Vol.27 (4), p.595-607
issn 0748-8017
1099-1638
1099-1638
language eng
recordid cdi_proquest_miscellaneous_1031295002
source Access via Wiley Online Library
subjects censoring
design of experiments
exponential
optimal designs
use condition
Weibull distribution
title A generalized linear model approach to designing accelerated life test experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20linear%20model%20approach%20to%20designing%20accelerated%20life%20test%20experiments&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Monroe,%20Eric%20M.&rft.date=2011-06&rft.volume=27&rft.issue=4&rft.spage=595&rft.epage=607&rft.pages=595-607&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.1143&rft_dat=%3Cproquest_cross%3E1031295002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031295002&rft_id=info:pmid/&rfr_iscdi=true