An implicit LU-SGS spectral volume method for the moment models in device simulations: Formulation in 1D and application to a p-multigrid algorithm

A high‐order spectral volume (SV) method was implemented for solving the steady‐state moment models, such as the hydrodynamic (HD) models and the energy transport (ET) models for semiconductor device simulations (in 1D). The first derivative inviscid/convective fluxes are handled using an approximat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in biomedical engineering 2011-09, Vol.27 (9), p.1362-1375
1. Verfasser: Kannan, Ravishekar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1375
container_issue 9
container_start_page 1362
container_title International journal for numerical methods in biomedical engineering
container_volume 27
creator Kannan, Ravishekar
description A high‐order spectral volume (SV) method was implemented for solving the steady‐state moment models, such as the hydrodynamic (HD) models and the energy transport (ET) models for semiconductor device simulations (in 1D). The first derivative inviscid/convective fluxes are handled using an approximate Riemann flux and the second derivative diffusive fluxes are discretized using the local discontinuous Galerkin formulation (LDG). The LDG method is also used for discretizing the potential equation. An implicit pre‐conditioned LU‐SGS p‐multigrid method developed for the SV Navier–Stokes (NS) solver by Kannan and Wang is adopted here for time marching. The entire formulation is compact and hence can be easily parallelized. A n+‐n‐n+ diode was assumed for simulation purposes and the results are compared with the existing discontinuous Galerkin simulation results. In general, the numerical results are very promising and indicate that the approach has a great potential for higher‐dimensional device problems. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cnm.1359
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031293887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031293887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3369-102a5b325605827dc3267d6d89d04c6e31ddb38ee257c9fe6286f1cf02a2c4593</originalsourceid><addsrcrecordid>eNp10M1uVCEUB_AbYxObtomPwNLNrXzMhYu7ZnSmxrFd9MsdoXBuhxYuV2CqfY6-sExGa1zI5nDgdyD5N81bgo8JxvS9GcMxYZ181exTPMOtkDPx-mXP5JvmKOd7XBeVUgq23zyfjMiFyTvjClpdtRfLC5QnMCVpjx6j3wRAAco6WjTEhMq6tjHAWGqx4DNyI7Lw6Ayg7MLG6-LimD-gRUx_ui0hH5EeLdLT9qfdaYlIo6mtqri75Oqlv4vJlXU4bPYG7TMc_a4HzdXi0-X8tF2dLz_PT1atYYzLlmCqu1tGO467ngprGOXCcttLi2eGAyPW3rIegHbCyAE47flAzFDHqJl1kh0073bvTil-30AuKrhswHs9QtxkRTAjVLK-F3-pSTHnBIOakgs6PVWkttGrGr3aRl9pu6M_nIen_zo1P_v6r3e5wM8Xr9OD4oKJTt2cLdU3sri5XpIvirNfdoCVCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031293887</pqid></control><display><type>article</type><title>An implicit LU-SGS spectral volume method for the moment models in device simulations: Formulation in 1D and application to a p-multigrid algorithm</title><source>Wiley Online Library</source><creator>Kannan, Ravishekar</creator><creatorcontrib>Kannan, Ravishekar</creatorcontrib><description>A high‐order spectral volume (SV) method was implemented for solving the steady‐state moment models, such as the hydrodynamic (HD) models and the energy transport (ET) models for semiconductor device simulations (in 1D). The first derivative inviscid/convective fluxes are handled using an approximate Riemann flux and the second derivative diffusive fluxes are discretized using the local discontinuous Galerkin formulation (LDG). The LDG method is also used for discretizing the potential equation. An implicit pre‐conditioned LU‐SGS p‐multigrid method developed for the SV Navier–Stokes (NS) solver by Kannan and Wang is adopted here for time marching. The entire formulation is compact and hence can be easily parallelized. A n+‐n‐n+ diode was assumed for simulation purposes and the results are compared with the existing discontinuous Galerkin simulation results. In general, the numerical results are very promising and indicate that the approach has a great potential for higher‐dimensional device problems. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 2040-7939</identifier><identifier>ISSN: 2040-7947</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.1359</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Computer simulation ; Derivatives ; Devices ; Fluxes ; Galerkin methods ; high-order ; implicit LU-SGS ; LDG ; Mathematical models ; Navier-Stokes equations ; p-multigrid ; Spectra ; spectral volume</subject><ispartof>International journal for numerical methods in biomedical engineering, 2011-09, Vol.27 (9), p.1362-1375</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3369-102a5b325605827dc3267d6d89d04c6e31ddb38ee257c9fe6286f1cf02a2c4593</citedby><cites>FETCH-LOGICAL-c3369-102a5b325605827dc3267d6d89d04c6e31ddb38ee257c9fe6286f1cf02a2c4593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.1359$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.1359$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kannan, Ravishekar</creatorcontrib><title>An implicit LU-SGS spectral volume method for the moment models in device simulations: Formulation in 1D and application to a p-multigrid algorithm</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><description>A high‐order spectral volume (SV) method was implemented for solving the steady‐state moment models, such as the hydrodynamic (HD) models and the energy transport (ET) models for semiconductor device simulations (in 1D). The first derivative inviscid/convective fluxes are handled using an approximate Riemann flux and the second derivative diffusive fluxes are discretized using the local discontinuous Galerkin formulation (LDG). The LDG method is also used for discretizing the potential equation. An implicit pre‐conditioned LU‐SGS p‐multigrid method developed for the SV Navier–Stokes (NS) solver by Kannan and Wang is adopted here for time marching. The entire formulation is compact and hence can be easily parallelized. A n+‐n‐n+ diode was assumed for simulation purposes and the results are compared with the existing discontinuous Galerkin simulation results. In general, the numerical results are very promising and indicate that the approach has a great potential for higher‐dimensional device problems. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Computer simulation</subject><subject>Derivatives</subject><subject>Devices</subject><subject>Fluxes</subject><subject>Galerkin methods</subject><subject>high-order</subject><subject>implicit LU-SGS</subject><subject>LDG</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>p-multigrid</subject><subject>Spectra</subject><subject>spectral volume</subject><issn>2040-7939</issn><issn>2040-7947</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10M1uVCEUB_AbYxObtomPwNLNrXzMhYu7ZnSmxrFd9MsdoXBuhxYuV2CqfY6-sExGa1zI5nDgdyD5N81bgo8JxvS9GcMxYZ181exTPMOtkDPx-mXP5JvmKOd7XBeVUgq23zyfjMiFyTvjClpdtRfLC5QnMCVpjx6j3wRAAco6WjTEhMq6tjHAWGqx4DNyI7Lw6Ayg7MLG6-LimD-gRUx_ui0hH5EeLdLT9qfdaYlIo6mtqri75Oqlv4vJlXU4bPYG7TMc_a4HzdXi0-X8tF2dLz_PT1atYYzLlmCqu1tGO467ngprGOXCcttLi2eGAyPW3rIegHbCyAE47flAzFDHqJl1kh0073bvTil-30AuKrhswHs9QtxkRTAjVLK-F3-pSTHnBIOakgs6PVWkttGrGr3aRl9pu6M_nIen_zo1P_v6r3e5wM8Xr9OD4oKJTt2cLdU3sri5XpIvirNfdoCVCg</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Kannan, Ravishekar</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201109</creationdate><title>An implicit LU-SGS spectral volume method for the moment models in device simulations: Formulation in 1D and application to a p-multigrid algorithm</title><author>Kannan, Ravishekar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3369-102a5b325605827dc3267d6d89d04c6e31ddb38ee257c9fe6286f1cf02a2c4593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer simulation</topic><topic>Derivatives</topic><topic>Devices</topic><topic>Fluxes</topic><topic>Galerkin methods</topic><topic>high-order</topic><topic>implicit LU-SGS</topic><topic>LDG</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>p-multigrid</topic><topic>Spectra</topic><topic>spectral volume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kannan, Ravishekar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kannan, Ravishekar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An implicit LU-SGS spectral volume method for the moment models in device simulations: Formulation in 1D and application to a p-multigrid algorithm</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><date>2011-09</date><risdate>2011</risdate><volume>27</volume><issue>9</issue><spage>1362</spage><epage>1375</epage><pages>1362-1375</pages><issn>2040-7939</issn><issn>2040-7947</issn><eissn>2040-7947</eissn><abstract>A high‐order spectral volume (SV) method was implemented for solving the steady‐state moment models, such as the hydrodynamic (HD) models and the energy transport (ET) models for semiconductor device simulations (in 1D). The first derivative inviscid/convective fluxes are handled using an approximate Riemann flux and the second derivative diffusive fluxes are discretized using the local discontinuous Galerkin formulation (LDG). The LDG method is also used for discretizing the potential equation. An implicit pre‐conditioned LU‐SGS p‐multigrid method developed for the SV Navier–Stokes (NS) solver by Kannan and Wang is adopted here for time marching. The entire formulation is compact and hence can be easily parallelized. A n+‐n‐n+ diode was assumed for simulation purposes and the results are compared with the existing discontinuous Galerkin simulation results. In general, the numerical results are very promising and indicate that the approach has a great potential for higher‐dimensional device problems. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/cnm.1359</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-7939
ispartof International journal for numerical methods in biomedical engineering, 2011-09, Vol.27 (9), p.1362-1375
issn 2040-7939
2040-7947
2040-7947
language eng
recordid cdi_proquest_miscellaneous_1031293887
source Wiley Online Library
subjects Computer simulation
Derivatives
Devices
Fluxes
Galerkin methods
high-order
implicit LU-SGS
LDG
Mathematical models
Navier-Stokes equations
p-multigrid
Spectra
spectral volume
title An implicit LU-SGS spectral volume method for the moment models in device simulations: Formulation in 1D and application to a p-multigrid algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20implicit%20LU-SGS%20spectral%20volume%20method%20for%20the%20moment%20models%20in%20device%20simulations:%20Formulation%20in%201D%20and%20application%20to%20a%20p-multigrid%20algorithm&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=Kannan,%20Ravishekar&rft.date=2011-09&rft.volume=27&rft.issue=9&rft.spage=1362&rft.epage=1375&rft.pages=1362-1375&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.1359&rft_dat=%3Cproquest_cross%3E1031293887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031293887&rft_id=info:pmid/&rfr_iscdi=true