Which Forces Control Supracrystal Nucleation in Organic Media?

Here, two mechanisms of fcc Au supracrystal (assembly of Au nanocrystals) growth are proposed. The sizes of the Au nanocrystals and the solvent in which they are dispersed are major parameters that determine the final morphology of nanocrystal assemblies; films by layer‐by‐layer growth (heterogeneou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2011-07, Vol.21 (14), p.2693-2704
Hauptverfasser: Goubet, Nicolas, Richardi, Johannes, Albouy, Pierre-Antoine, Pileni, Marie-Paule
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2704
container_issue 14
container_start_page 2693
container_title Advanced functional materials
container_volume 21
creator Goubet, Nicolas
Richardi, Johannes
Albouy, Pierre-Antoine
Pileni, Marie-Paule
description Here, two mechanisms of fcc Au supracrystal (assembly of Au nanocrystals) growth are proposed. The sizes of the Au nanocrystals and the solvent in which they are dispersed are major parameters that determine the final morphology of nanocrystal assemblies; films by layer‐by‐layer growth (heterogeneous growth), characterized by their plastic deformation, or well‐defined shapes grown in solution (homogeneous growth). Experiments supported by simulations demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature. With a low size distribution, gold nano­crystals can crystallize in supracrystals. These mesostructures show different morphologies. Here we show the influence of the nanocrystals size and solvent on the supracrystal nucleation, which controls the supracrystalline shape. Brownian dynamics simulations supported by experiments demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature. The plastic deformation of film made of these supracrystals is also discussed.
doi_str_mv 10.1002/adfm.201100382
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031291757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031291757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4262-c7e2bc90f50b6fc3894895b10bc60656ffda5e46d9c7a59252fee2a5d615ab23</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EEqWwMmdkSfFHbCcLqEppi9QPAZXKZjmOTQ1pUuxE0H9PqqCKjenupPdueABcIzhAEOJbmZvtAEPUHiTGJ6CHGGIhgTg-Pe7o9RxceP8OIeKcRD1wt95YtQnGlVPaB2lV1q4qgpdm56Rye1_LIlg0qtCytlUZ2DJYujdZWhXMdW7l_SU4M7Lw-up39sFq_LBKp-FsOXlMh7NQRZjhUHGNM5VAQ2HGjCJxEsUJzRDMFIOMMmNySXXE8kRxSRNMsdEaS5ozRGWGSR_cdG93rvpstK_F1nqli0KWumq8QJAgnCBOeYsOOlS5ynunjdg5u5Vu30Li0EkcOoljp1ZIOuHLFnr_Dy2Go_H8rxt2rvW1_j660n0IxgmnYr2YCJRO5k_R9FmMyA-xuXra</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031291757</pqid></control><display><type>article</type><title>Which Forces Control Supracrystal Nucleation in Organic Media?</title><source>Access via Wiley Online Library</source><creator>Goubet, Nicolas ; Richardi, Johannes ; Albouy, Pierre-Antoine ; Pileni, Marie-Paule</creator><creatorcontrib>Goubet, Nicolas ; Richardi, Johannes ; Albouy, Pierre-Antoine ; Pileni, Marie-Paule</creatorcontrib><description>Here, two mechanisms of fcc Au supracrystal (assembly of Au nanocrystals) growth are proposed. The sizes of the Au nanocrystals and the solvent in which they are dispersed are major parameters that determine the final morphology of nanocrystal assemblies; films by layer‐by‐layer growth (heterogeneous growth), characterized by their plastic deformation, or well‐defined shapes grown in solution (homogeneous growth). Experiments supported by simulations demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature. With a low size distribution, gold nano­crystals can crystallize in supracrystals. These mesostructures show different morphologies. Here we show the influence of the nanocrystals size and solvent on the supracrystal nucleation, which controls the supracrystalline shape. Brownian dynamics simulations supported by experiments demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature. The plastic deformation of film made of these supracrystals is also discussed.</description><identifier>ISSN: 1616-301X</identifier><identifier>ISSN: 1616-3028</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201100382</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Assembly ; Attraction ; crystal growth ; dislocation ; Gold ; nanocrystal ; Nanocrystals ; Nucleation ; Plastic deformation ; self-assembly ; Simulation ; Solvents ; supracrystal</subject><ispartof>Advanced functional materials, 2011-07, Vol.21 (14), p.2693-2704</ispartof><rights>2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4262-c7e2bc90f50b6fc3894895b10bc60656ffda5e46d9c7a59252fee2a5d615ab23</citedby><cites>FETCH-LOGICAL-c4262-c7e2bc90f50b6fc3894895b10bc60656ffda5e46d9c7a59252fee2a5d615ab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201100382$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201100382$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Goubet, Nicolas</creatorcontrib><creatorcontrib>Richardi, Johannes</creatorcontrib><creatorcontrib>Albouy, Pierre-Antoine</creatorcontrib><creatorcontrib>Pileni, Marie-Paule</creatorcontrib><title>Which Forces Control Supracrystal Nucleation in Organic Media?</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Here, two mechanisms of fcc Au supracrystal (assembly of Au nanocrystals) growth are proposed. The sizes of the Au nanocrystals and the solvent in which they are dispersed are major parameters that determine the final morphology of nanocrystal assemblies; films by layer‐by‐layer growth (heterogeneous growth), characterized by their plastic deformation, or well‐defined shapes grown in solution (homogeneous growth). Experiments supported by simulations demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature. With a low size distribution, gold nano­crystals can crystallize in supracrystals. These mesostructures show different morphologies. Here we show the influence of the nanocrystals size and solvent on the supracrystal nucleation, which controls the supracrystalline shape. Brownian dynamics simulations supported by experiments demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature. The plastic deformation of film made of these supracrystals is also discussed.</description><subject>Assembly</subject><subject>Attraction</subject><subject>crystal growth</subject><subject>dislocation</subject><subject>Gold</subject><subject>nanocrystal</subject><subject>Nanocrystals</subject><subject>Nucleation</subject><subject>Plastic deformation</subject><subject>self-assembly</subject><subject>Simulation</subject><subject>Solvents</subject><subject>supracrystal</subject><issn>1616-301X</issn><issn>1616-3028</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQC0EEqWwMmdkSfFHbCcLqEppi9QPAZXKZjmOTQ1pUuxE0H9PqqCKjenupPdueABcIzhAEOJbmZvtAEPUHiTGJ6CHGGIhgTg-Pe7o9RxceP8OIeKcRD1wt95YtQnGlVPaB2lV1q4qgpdm56Rye1_LIlg0qtCytlUZ2DJYujdZWhXMdW7l_SU4M7Lw-up39sFq_LBKp-FsOXlMh7NQRZjhUHGNM5VAQ2HGjCJxEsUJzRDMFIOMMmNySXXE8kRxSRNMsdEaS5ozRGWGSR_cdG93rvpstK_F1nqli0KWumq8QJAgnCBOeYsOOlS5ynunjdg5u5Vu30Li0EkcOoljp1ZIOuHLFnr_Dy2Go_H8rxt2rvW1_j660n0IxgmnYr2YCJRO5k_R9FmMyA-xuXra</recordid><startdate>20110722</startdate><enddate>20110722</enddate><creator>Goubet, Nicolas</creator><creator>Richardi, Johannes</creator><creator>Albouy, Pierre-Antoine</creator><creator>Pileni, Marie-Paule</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110722</creationdate><title>Which Forces Control Supracrystal Nucleation in Organic Media?</title><author>Goubet, Nicolas ; Richardi, Johannes ; Albouy, Pierre-Antoine ; Pileni, Marie-Paule</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4262-c7e2bc90f50b6fc3894895b10bc60656ffda5e46d9c7a59252fee2a5d615ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Assembly</topic><topic>Attraction</topic><topic>crystal growth</topic><topic>dislocation</topic><topic>Gold</topic><topic>nanocrystal</topic><topic>Nanocrystals</topic><topic>Nucleation</topic><topic>Plastic deformation</topic><topic>self-assembly</topic><topic>Simulation</topic><topic>Solvents</topic><topic>supracrystal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goubet, Nicolas</creatorcontrib><creatorcontrib>Richardi, Johannes</creatorcontrib><creatorcontrib>Albouy, Pierre-Antoine</creatorcontrib><creatorcontrib>Pileni, Marie-Paule</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goubet, Nicolas</au><au>Richardi, Johannes</au><au>Albouy, Pierre-Antoine</au><au>Pileni, Marie-Paule</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Which Forces Control Supracrystal Nucleation in Organic Media?</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2011-07-22</date><risdate>2011</risdate><volume>21</volume><issue>14</issue><spage>2693</spage><epage>2704</epage><pages>2693-2704</pages><issn>1616-301X</issn><issn>1616-3028</issn><eissn>1616-3028</eissn><abstract>Here, two mechanisms of fcc Au supracrystal (assembly of Au nanocrystals) growth are proposed. The sizes of the Au nanocrystals and the solvent in which they are dispersed are major parameters that determine the final morphology of nanocrystal assemblies; films by layer‐by‐layer growth (heterogeneous growth), characterized by their plastic deformation, or well‐defined shapes grown in solution (homogeneous growth). Experiments supported by simulations demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature. With a low size distribution, gold nano­crystals can crystallize in supracrystals. These mesostructures show different morphologies. Here we show the influence of the nanocrystals size and solvent on the supracrystal nucleation, which controls the supracrystalline shape. Brownian dynamics simulations supported by experiments demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature. The plastic deformation of film made of these supracrystals is also discussed.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201100382</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2011-07, Vol.21 (14), p.2693-2704
issn 1616-301X
1616-3028
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1031291757
source Access via Wiley Online Library
subjects Assembly
Attraction
crystal growth
dislocation
Gold
nanocrystal
Nanocrystals
Nucleation
Plastic deformation
self-assembly
Simulation
Solvents
supracrystal
title Which Forces Control Supracrystal Nucleation in Organic Media?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Which%20Forces%20Control%20Supracrystal%20Nucleation%20in%20Organic%20Media?&rft.jtitle=Advanced%20functional%20materials&rft.au=Goubet,%20Nicolas&rft.date=2011-07-22&rft.volume=21&rft.issue=14&rft.spage=2693&rft.epage=2704&rft.pages=2693-2704&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201100382&rft_dat=%3Cproquest_cross%3E1031291757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031291757&rft_id=info:pmid/&rfr_iscdi=true