Which Forces Control Supracrystal Nucleation in Organic Media?
Here, two mechanisms of fcc Au supracrystal (assembly of Au nanocrystals) growth are proposed. The sizes of the Au nanocrystals and the solvent in which they are dispersed are major parameters that determine the final morphology of nanocrystal assemblies; films by layer‐by‐layer growth (heterogeneou...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2011-07, Vol.21 (14), p.2693-2704 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2704 |
---|---|
container_issue | 14 |
container_start_page | 2693 |
container_title | Advanced functional materials |
container_volume | 21 |
creator | Goubet, Nicolas Richardi, Johannes Albouy, Pierre-Antoine Pileni, Marie-Paule |
description | Here, two mechanisms of fcc Au supracrystal (assembly of Au nanocrystals) growth are proposed. The sizes of the Au nanocrystals and the solvent in which they are dispersed are major parameters that determine the final morphology of nanocrystal assemblies; films by layer‐by‐layer growth (heterogeneous growth), characterized by their plastic deformation, or well‐defined shapes grown in solution (homogeneous growth). Experiments supported by simulations demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature.
With a low size distribution, gold nanocrystals can crystallize in supracrystals. These mesostructures show different morphologies. Here we show the influence of the nanocrystals size and solvent on the supracrystal nucleation, which controls the supracrystalline shape. Brownian dynamics simulations supported by experiments demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature. The plastic deformation of film made of these supracrystals is also discussed. |
doi_str_mv | 10.1002/adfm.201100382 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031291757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031291757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4262-c7e2bc90f50b6fc3894895b10bc60656ffda5e46d9c7a59252fee2a5d615ab23</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EEqWwMmdkSfFHbCcLqEppi9QPAZXKZjmOTQ1pUuxE0H9PqqCKjenupPdueABcIzhAEOJbmZvtAEPUHiTGJ6CHGGIhgTg-Pe7o9RxceP8OIeKcRD1wt95YtQnGlVPaB2lV1q4qgpdm56Rye1_LIlg0qtCytlUZ2DJYujdZWhXMdW7l_SU4M7Lw-up39sFq_LBKp-FsOXlMh7NQRZjhUHGNM5VAQ2HGjCJxEsUJzRDMFIOMMmNySXXE8kRxSRNMsdEaS5ozRGWGSR_cdG93rvpstK_F1nqli0KWumq8QJAgnCBOeYsOOlS5ynunjdg5u5Vu30Li0EkcOoljp1ZIOuHLFnr_Dy2Go_H8rxt2rvW1_j660n0IxgmnYr2YCJRO5k_R9FmMyA-xuXra</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031291757</pqid></control><display><type>article</type><title>Which Forces Control Supracrystal Nucleation in Organic Media?</title><source>Access via Wiley Online Library</source><creator>Goubet, Nicolas ; Richardi, Johannes ; Albouy, Pierre-Antoine ; Pileni, Marie-Paule</creator><creatorcontrib>Goubet, Nicolas ; Richardi, Johannes ; Albouy, Pierre-Antoine ; Pileni, Marie-Paule</creatorcontrib><description>Here, two mechanisms of fcc Au supracrystal (assembly of Au nanocrystals) growth are proposed. The sizes of the Au nanocrystals and the solvent in which they are dispersed are major parameters that determine the final morphology of nanocrystal assemblies; films by layer‐by‐layer growth (heterogeneous growth), characterized by their plastic deformation, or well‐defined shapes grown in solution (homogeneous growth). Experiments supported by simulations demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature.
With a low size distribution, gold nanocrystals can crystallize in supracrystals. These mesostructures show different morphologies. Here we show the influence of the nanocrystals size and solvent on the supracrystal nucleation, which controls the supracrystalline shape. Brownian dynamics simulations supported by experiments demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature. The plastic deformation of film made of these supracrystals is also discussed.</description><identifier>ISSN: 1616-301X</identifier><identifier>ISSN: 1616-3028</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201100382</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Assembly ; Attraction ; crystal growth ; dislocation ; Gold ; nanocrystal ; Nanocrystals ; Nucleation ; Plastic deformation ; self-assembly ; Simulation ; Solvents ; supracrystal</subject><ispartof>Advanced functional materials, 2011-07, Vol.21 (14), p.2693-2704</ispartof><rights>2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4262-c7e2bc90f50b6fc3894895b10bc60656ffda5e46d9c7a59252fee2a5d615ab23</citedby><cites>FETCH-LOGICAL-c4262-c7e2bc90f50b6fc3894895b10bc60656ffda5e46d9c7a59252fee2a5d615ab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201100382$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201100382$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Goubet, Nicolas</creatorcontrib><creatorcontrib>Richardi, Johannes</creatorcontrib><creatorcontrib>Albouy, Pierre-Antoine</creatorcontrib><creatorcontrib>Pileni, Marie-Paule</creatorcontrib><title>Which Forces Control Supracrystal Nucleation in Organic Media?</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Here, two mechanisms of fcc Au supracrystal (assembly of Au nanocrystals) growth are proposed. The sizes of the Au nanocrystals and the solvent in which they are dispersed are major parameters that determine the final morphology of nanocrystal assemblies; films by layer‐by‐layer growth (heterogeneous growth), characterized by their plastic deformation, or well‐defined shapes grown in solution (homogeneous growth). Experiments supported by simulations demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature.
With a low size distribution, gold nanocrystals can crystallize in supracrystals. These mesostructures show different morphologies. Here we show the influence of the nanocrystals size and solvent on the supracrystal nucleation, which controls the supracrystalline shape. Brownian dynamics simulations supported by experiments demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature. The plastic deformation of film made of these supracrystals is also discussed.</description><subject>Assembly</subject><subject>Attraction</subject><subject>crystal growth</subject><subject>dislocation</subject><subject>Gold</subject><subject>nanocrystal</subject><subject>Nanocrystals</subject><subject>Nucleation</subject><subject>Plastic deformation</subject><subject>self-assembly</subject><subject>Simulation</subject><subject>Solvents</subject><subject>supracrystal</subject><issn>1616-301X</issn><issn>1616-3028</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQC0EEqWwMmdkSfFHbCcLqEppi9QPAZXKZjmOTQ1pUuxE0H9PqqCKjenupPdueABcIzhAEOJbmZvtAEPUHiTGJ6CHGGIhgTg-Pe7o9RxceP8OIeKcRD1wt95YtQnGlVPaB2lV1q4qgpdm56Rye1_LIlg0qtCytlUZ2DJYujdZWhXMdW7l_SU4M7Lw-up39sFq_LBKp-FsOXlMh7NQRZjhUHGNM5VAQ2HGjCJxEsUJzRDMFIOMMmNySXXE8kRxSRNMsdEaS5ozRGWGSR_cdG93rvpstK_F1nqli0KWumq8QJAgnCBOeYsOOlS5ynunjdg5u5Vu30Li0EkcOoljp1ZIOuHLFnr_Dy2Go_H8rxt2rvW1_j660n0IxgmnYr2YCJRO5k_R9FmMyA-xuXra</recordid><startdate>20110722</startdate><enddate>20110722</enddate><creator>Goubet, Nicolas</creator><creator>Richardi, Johannes</creator><creator>Albouy, Pierre-Antoine</creator><creator>Pileni, Marie-Paule</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110722</creationdate><title>Which Forces Control Supracrystal Nucleation in Organic Media?</title><author>Goubet, Nicolas ; Richardi, Johannes ; Albouy, Pierre-Antoine ; Pileni, Marie-Paule</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4262-c7e2bc90f50b6fc3894895b10bc60656ffda5e46d9c7a59252fee2a5d615ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Assembly</topic><topic>Attraction</topic><topic>crystal growth</topic><topic>dislocation</topic><topic>Gold</topic><topic>nanocrystal</topic><topic>Nanocrystals</topic><topic>Nucleation</topic><topic>Plastic deformation</topic><topic>self-assembly</topic><topic>Simulation</topic><topic>Solvents</topic><topic>supracrystal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goubet, Nicolas</creatorcontrib><creatorcontrib>Richardi, Johannes</creatorcontrib><creatorcontrib>Albouy, Pierre-Antoine</creatorcontrib><creatorcontrib>Pileni, Marie-Paule</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goubet, Nicolas</au><au>Richardi, Johannes</au><au>Albouy, Pierre-Antoine</au><au>Pileni, Marie-Paule</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Which Forces Control Supracrystal Nucleation in Organic Media?</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2011-07-22</date><risdate>2011</risdate><volume>21</volume><issue>14</issue><spage>2693</spage><epage>2704</epage><pages>2693-2704</pages><issn>1616-301X</issn><issn>1616-3028</issn><eissn>1616-3028</eissn><abstract>Here, two mechanisms of fcc Au supracrystal (assembly of Au nanocrystals) growth are proposed. The sizes of the Au nanocrystals and the solvent in which they are dispersed are major parameters that determine the final morphology of nanocrystal assemblies; films by layer‐by‐layer growth (heterogeneous growth), characterized by their plastic deformation, or well‐defined shapes grown in solution (homogeneous growth). Experiments supported by simulations demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature.
With a low size distribution, gold nanocrystals can crystallize in supracrystals. These mesostructures show different morphologies. Here we show the influence of the nanocrystals size and solvent on the supracrystal nucleation, which controls the supracrystalline shape. Brownian dynamics simulations supported by experiments demonstrate that supracrystal nucleation is mainly driven by solvent‐mediated interactions and not solely by the van der Waals attraction between nanocrystal cores, as widely assumed in the literature. The plastic deformation of film made of these supracrystals is also discussed.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201100382</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2011-07, Vol.21 (14), p.2693-2704 |
issn | 1616-301X 1616-3028 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031291757 |
source | Access via Wiley Online Library |
subjects | Assembly Attraction crystal growth dislocation Gold nanocrystal Nanocrystals Nucleation Plastic deformation self-assembly Simulation Solvents supracrystal |
title | Which Forces Control Supracrystal Nucleation in Organic Media? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Which%20Forces%20Control%20Supracrystal%20Nucleation%20in%20Organic%20Media?&rft.jtitle=Advanced%20functional%20materials&rft.au=Goubet,%20Nicolas&rft.date=2011-07-22&rft.volume=21&rft.issue=14&rft.spage=2693&rft.epage=2704&rft.pages=2693-2704&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201100382&rft_dat=%3Cproquest_cross%3E1031291757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031291757&rft_id=info:pmid/&rfr_iscdi=true |