An improved Artificial Immune Systembased Network Intrusion Detection by Using Rough Set

With theincreasing worldwide network attacks, intrusion detection (ID) hasbecome a popularresearch topic inlast dec- ade.Several artificial intelligence techniques such as neural networks and fuzzy logichave been applied in ID. The re- sults are varied. Theintrusion detection accuracy is themain foc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tong xin yu wang lu 2012-02, Vol.4 (1), p.41-41
Hauptverfasser: Shen, Junyuan, Wang, Jidong, Ai, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 41
container_title Tong xin yu wang lu
container_volume 4
creator Shen, Junyuan
Wang, Jidong
Ai, Hao
description With theincreasing worldwide network attacks, intrusion detection (ID) hasbecome a popularresearch topic inlast dec- ade.Several artificial intelligence techniques such as neural networks and fuzzy logichave been applied in ID. The re- sults are varied. Theintrusion detection accuracy is themain focus for intrusion detection systems (IDS). Most research activities in the area aiming to improve the ID accuracy. In this paper, anartificial immune system (AIS) based network intrusion detection scheme is proposed. An optimized feature selection using Rough Set (RS) theory is defined. The complexity issue is addressed in the design of the algorithms. The scheme is tested on the widely used KDD CUP 99 dataset. The result shows that theproposed scheme outperforms other schemes in detection accuracy.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031290771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031290771</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_10312907713</originalsourceid><addsrcrecordid>eNqVjc0KgkAUhYcgSMp3uMs2gqOCuZR-yE2LfqCdqF1typkp70zh22fQC3Q254PzwRkxhydR4gVRwCfMJbr5Q8IFD0LfYedUgZCPTr_wAmlnRC0qUbSQSWkVwqEng7IsaFh3aN66u0OmTGdJaAUrNFiZL5U9nEioBvbaNlc4oJmxcV20hO6vp2y-WR-XW2_4elokk0tBFbZtoVBbyrkf8iDx45iHf6gfc49F7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031290771</pqid></control><display><type>article</type><title>An improved Artificial Immune Systembased Network Intrusion Detection by Using Rough Set</title><source>EZB Electronic Journals Library</source><creator>Shen, Junyuan ; Wang, Jidong ; Ai, Hao</creator><creatorcontrib>Shen, Junyuan ; Wang, Jidong ; Ai, Hao</creatorcontrib><description>With theincreasing worldwide network attacks, intrusion detection (ID) hasbecome a popularresearch topic inlast dec- ade.Several artificial intelligence techniques such as neural networks and fuzzy logichave been applied in ID. The re- sults are varied. Theintrusion detection accuracy is themain focus for intrusion detection systems (IDS). Most research activities in the area aiming to improve the ID accuracy. In this paper, anartificial immune system (AIS) based network intrusion detection scheme is proposed. An optimized feature selection using Rough Set (RS) theory is defined. The complexity issue is addressed in the design of the algorithms. The scheme is tested on the widely used KDD CUP 99 dataset. The result shows that theproposed scheme outperforms other schemes in detection accuracy.</description><identifier>EISSN: 1949-2421</identifier><language>eng</language><subject>Artificial intelligence ; Design engineering ; Expert systems ; Fuzzy logic ; Immune systems ; Intrusion ; Networks ; Neural networks</subject><ispartof>Tong xin yu wang lu, 2012-02, Vol.4 (1), p.41-41</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Shen, Junyuan</creatorcontrib><creatorcontrib>Wang, Jidong</creatorcontrib><creatorcontrib>Ai, Hao</creatorcontrib><title>An improved Artificial Immune Systembased Network Intrusion Detection by Using Rough Set</title><title>Tong xin yu wang lu</title><description>With theincreasing worldwide network attacks, intrusion detection (ID) hasbecome a popularresearch topic inlast dec- ade.Several artificial intelligence techniques such as neural networks and fuzzy logichave been applied in ID. The re- sults are varied. Theintrusion detection accuracy is themain focus for intrusion detection systems (IDS). Most research activities in the area aiming to improve the ID accuracy. In this paper, anartificial immune system (AIS) based network intrusion detection scheme is proposed. An optimized feature selection using Rough Set (RS) theory is defined. The complexity issue is addressed in the design of the algorithms. The scheme is tested on the widely used KDD CUP 99 dataset. The result shows that theproposed scheme outperforms other schemes in detection accuracy.</description><subject>Artificial intelligence</subject><subject>Design engineering</subject><subject>Expert systems</subject><subject>Fuzzy logic</subject><subject>Immune systems</subject><subject>Intrusion</subject><subject>Networks</subject><subject>Neural networks</subject><issn>1949-2421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqVjc0KgkAUhYcgSMp3uMs2gqOCuZR-yE2LfqCdqF1typkp70zh22fQC3Q254PzwRkxhydR4gVRwCfMJbr5Q8IFD0LfYedUgZCPTr_wAmlnRC0qUbSQSWkVwqEng7IsaFh3aN66u0OmTGdJaAUrNFiZL5U9nEioBvbaNlc4oJmxcV20hO6vp2y-WR-XW2_4elokk0tBFbZtoVBbyrkf8iDx45iHf6gfc49F7Q</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Shen, Junyuan</creator><creator>Wang, Jidong</creator><creator>Ai, Hao</creator><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120201</creationdate><title>An improved Artificial Immune Systembased Network Intrusion Detection by Using Rough Set</title><author>Shen, Junyuan ; Wang, Jidong ; Ai, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_10312907713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial intelligence</topic><topic>Design engineering</topic><topic>Expert systems</topic><topic>Fuzzy logic</topic><topic>Immune systems</topic><topic>Intrusion</topic><topic>Networks</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Shen, Junyuan</creatorcontrib><creatorcontrib>Wang, Jidong</creatorcontrib><creatorcontrib>Ai, Hao</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Tong xin yu wang lu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Junyuan</au><au>Wang, Jidong</au><au>Ai, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved Artificial Immune Systembased Network Intrusion Detection by Using Rough Set</atitle><jtitle>Tong xin yu wang lu</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>4</volume><issue>1</issue><spage>41</spage><epage>41</epage><pages>41-41</pages><eissn>1949-2421</eissn><abstract>With theincreasing worldwide network attacks, intrusion detection (ID) hasbecome a popularresearch topic inlast dec- ade.Several artificial intelligence techniques such as neural networks and fuzzy logichave been applied in ID. The re- sults are varied. Theintrusion detection accuracy is themain focus for intrusion detection systems (IDS). Most research activities in the area aiming to improve the ID accuracy. In this paper, anartificial immune system (AIS) based network intrusion detection scheme is proposed. An optimized feature selection using Rough Set (RS) theory is defined. The complexity issue is addressed in the design of the algorithms. The scheme is tested on the widely used KDD CUP 99 dataset. The result shows that theproposed scheme outperforms other schemes in detection accuracy.</abstract></addata></record>
fulltext fulltext
identifier EISSN: 1949-2421
ispartof Tong xin yu wang lu, 2012-02, Vol.4 (1), p.41-41
issn 1949-2421
language eng
recordid cdi_proquest_miscellaneous_1031290771
source EZB Electronic Journals Library
subjects Artificial intelligence
Design engineering
Expert systems
Fuzzy logic
Immune systems
Intrusion
Networks
Neural networks
title An improved Artificial Immune Systembased Network Intrusion Detection by Using Rough Set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20Artificial%20Immune%20Systembased%20Network%20Intrusion%20Detection%20by%20Using%20Rough%20Set&rft.jtitle=Tong%20xin%20yu%20wang%20lu&rft.au=Shen,%20Junyuan&rft.date=2012-02-01&rft.volume=4&rft.issue=1&rft.spage=41&rft.epage=41&rft.pages=41-41&rft.eissn=1949-2421&rft_id=info:doi/&rft_dat=%3Cproquest%3E1031290771%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031290771&rft_id=info:pmid/&rfr_iscdi=true