ANOVA-principal component analysis and ANOVA-simultaneous component analysis: a comparison

ANOVA–simultaneous component analysis (ASCA) is a recently developed tool to analyze multivariate data. In this paper, we enhance the explorative capability of ASCA by introducing a projection of the observations on the principal component subspace to visualize the variation among the measurements....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemometrics 2011-10, Vol.25 (10), p.561-567
Hauptverfasser: Zwanenburg, Gooitzen, Hoefsloot, Huub C.J., Westerhuis, Johan A., Jansen, Jeroen J., Smilde, Age K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 567
container_issue 10
container_start_page 561
container_title Journal of chemometrics
container_volume 25
creator Zwanenburg, Gooitzen
Hoefsloot, Huub C.J.
Westerhuis, Johan A.
Jansen, Jeroen J.
Smilde, Age K.
description ANOVA–simultaneous component analysis (ASCA) is a recently developed tool to analyze multivariate data. In this paper, we enhance the explorative capability of ASCA by introducing a projection of the observations on the principal component subspace to visualize the variation among the measurements. We compare the significance of experimental effects for ASCA and ANOVA–principal component analysis (PCA), a similar tool to explore multivariate data, by using permutation tests. Furthermore, we quantify the quality of the loadings estimate obtained with ASCA and compare this with the loadings estimate obtained with ANOVA–PCA. Copyright © 2011 John Wiley & Sons, Ltd. This work presents an enhancement of ANOVA‐simultaneous component analysis by projecting the observations onto the principal component subspace, thus allowing the visualization of the variation of the measurements. Furthermore, using a synthetic data set, a comparison is made between the significance of experimental effects and the quality of estimated loadings for ANOVA‐simultaneous component analysis and ANOVA‐principal component analysis.
doi_str_mv 10.1002/cem.1400
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031290380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524184171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4260-1c8d932b6f91f29d261db03439d22e54057ff59f840dcd3f6264f1baa0f1eb803</originalsourceid><addsrcrecordid>eNp1kMtKAzEUQIMoWKvgJxRBcDP15jFp4q6W2gpaN75wEzKZBEbnZdKi_XujUxREV7nkHg6Xg9AhhiEGIKfGVkPMALZQD4OUCSbicRv1QAieSCroLtoL4Rkg7ijroafx4uZ-nLS-qE3R6nJgmqptalsvB7rW5ToUIQ75oMNCUa3Kpa5tswp_kGcD_fWrfRGaeh_tOF0Ge7B5--juYno7mSdXN7PLyfgqMYxwSLARuaQk405iR2ROOM4zoIzGkdiUQTpyLpVOMMhNTh0nnDmcaQ0O20wA7aOTztv65nVlw1JVRTC2LLs7FQaKiQT6hR79Qp-blY_XByVhBAJAkB-f8U0I3joV61Tar6NJfTZWsbH6bBzR441PB6NL53WsGL55wrjgqWSRSzrurSjt-l-fmkyvN94NX4Slff_mtX9RfERHqXpYzBS_vZ7DQpwrST8ASn6YOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907080082</pqid></control><display><type>article</type><title>ANOVA-principal component analysis and ANOVA-simultaneous component analysis: a comparison</title><source>Wiley Online Library All Journals</source><creator>Zwanenburg, Gooitzen ; Hoefsloot, Huub C.J. ; Westerhuis, Johan A. ; Jansen, Jeroen J. ; Smilde, Age K.</creator><creatorcontrib>Zwanenburg, Gooitzen ; Hoefsloot, Huub C.J. ; Westerhuis, Johan A. ; Jansen, Jeroen J. ; Smilde, Age K.</creatorcontrib><description>ANOVA–simultaneous component analysis (ASCA) is a recently developed tool to analyze multivariate data. In this paper, we enhance the explorative capability of ASCA by introducing a projection of the observations on the principal component subspace to visualize the variation among the measurements. We compare the significance of experimental effects for ASCA and ANOVA–principal component analysis (PCA), a similar tool to explore multivariate data, by using permutation tests. Furthermore, we quantify the quality of the loadings estimate obtained with ASCA and compare this with the loadings estimate obtained with ANOVA–PCA. Copyright © 2011 John Wiley &amp; Sons, Ltd. This work presents an enhancement of ANOVA‐simultaneous component analysis by projecting the observations onto the principal component subspace, thus allowing the visualization of the variation of the measurements. Furthermore, using a synthetic data set, a comparison is made between the significance of experimental effects and the quality of estimated loadings for ANOVA‐simultaneous component analysis and ANOVA‐principal component analysis.</description><identifier>ISSN: 0886-9383</identifier><identifier>ISSN: 1099-128X</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.1400</identifier><identifier>CODEN: JOCHEU</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>ANOVA-PCA ; ASCA ; Chemistry ; Chemometrics ; Comparative analysis ; Data processing ; Estimates ; Exact sciences and technology ; General and physical chemistry ; General. Nomenclature, chemical documentation, computer chemistry ; Measurement ; metabolomics ; multivariate data analysis ; permutation tests ; Permutations ; Principal components analysis ; Projection ; Proteomics ; Subspaces ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Variance analysis</subject><ispartof>Journal of chemometrics, 2011-10, Vol.25 (10), p.561-567</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4260-1c8d932b6f91f29d261db03439d22e54057ff59f840dcd3f6264f1baa0f1eb803</citedby><cites>FETCH-LOGICAL-c4260-1c8d932b6f91f29d261db03439d22e54057ff59f840dcd3f6264f1baa0f1eb803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.1400$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.1400$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24686594$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zwanenburg, Gooitzen</creatorcontrib><creatorcontrib>Hoefsloot, Huub C.J.</creatorcontrib><creatorcontrib>Westerhuis, Johan A.</creatorcontrib><creatorcontrib>Jansen, Jeroen J.</creatorcontrib><creatorcontrib>Smilde, Age K.</creatorcontrib><title>ANOVA-principal component analysis and ANOVA-simultaneous component analysis: a comparison</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>ANOVA–simultaneous component analysis (ASCA) is a recently developed tool to analyze multivariate data. In this paper, we enhance the explorative capability of ASCA by introducing a projection of the observations on the principal component subspace to visualize the variation among the measurements. We compare the significance of experimental effects for ASCA and ANOVA–principal component analysis (PCA), a similar tool to explore multivariate data, by using permutation tests. Furthermore, we quantify the quality of the loadings estimate obtained with ASCA and compare this with the loadings estimate obtained with ANOVA–PCA. Copyright © 2011 John Wiley &amp; Sons, Ltd. This work presents an enhancement of ANOVA‐simultaneous component analysis by projecting the observations onto the principal component subspace, thus allowing the visualization of the variation of the measurements. Furthermore, using a synthetic data set, a comparison is made between the significance of experimental effects and the quality of estimated loadings for ANOVA‐simultaneous component analysis and ANOVA‐principal component analysis.</description><subject>ANOVA-PCA</subject><subject>ASCA</subject><subject>Chemistry</subject><subject>Chemometrics</subject><subject>Comparative analysis</subject><subject>Data processing</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General. Nomenclature, chemical documentation, computer chemistry</subject><subject>Measurement</subject><subject>metabolomics</subject><subject>multivariate data analysis</subject><subject>permutation tests</subject><subject>Permutations</subject><subject>Principal components analysis</subject><subject>Projection</subject><subject>Proteomics</subject><subject>Subspaces</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Variance analysis</subject><issn>0886-9383</issn><issn>1099-128X</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUQIMoWKvgJxRBcDP15jFp4q6W2gpaN75wEzKZBEbnZdKi_XujUxREV7nkHg6Xg9AhhiEGIKfGVkPMALZQD4OUCSbicRv1QAieSCroLtoL4Rkg7ijroafx4uZ-nLS-qE3R6nJgmqptalsvB7rW5ToUIQ75oMNCUa3Kpa5tswp_kGcD_fWrfRGaeh_tOF0Ge7B5--juYno7mSdXN7PLyfgqMYxwSLARuaQk405iR2ROOM4zoIzGkdiUQTpyLpVOMMhNTh0nnDmcaQ0O20wA7aOTztv65nVlw1JVRTC2LLs7FQaKiQT6hR79Qp-blY_XByVhBAJAkB-f8U0I3joV61Tar6NJfTZWsbH6bBzR441PB6NL53WsGL55wrjgqWSRSzrurSjt-l-fmkyvN94NX4Slff_mtX9RfERHqXpYzBS_vZ7DQpwrST8ASn6YOQ</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Zwanenburg, Gooitzen</creator><creator>Hoefsloot, Huub C.J.</creator><creator>Westerhuis, Johan A.</creator><creator>Jansen, Jeroen J.</creator><creator>Smilde, Age K.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201110</creationdate><title>ANOVA-principal component analysis and ANOVA-simultaneous component analysis: a comparison</title><author>Zwanenburg, Gooitzen ; Hoefsloot, Huub C.J. ; Westerhuis, Johan A. ; Jansen, Jeroen J. ; Smilde, Age K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4260-1c8d932b6f91f29d261db03439d22e54057ff59f840dcd3f6264f1baa0f1eb803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ANOVA-PCA</topic><topic>ASCA</topic><topic>Chemistry</topic><topic>Chemometrics</topic><topic>Comparative analysis</topic><topic>Data processing</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General. Nomenclature, chemical documentation, computer chemistry</topic><topic>Measurement</topic><topic>metabolomics</topic><topic>multivariate data analysis</topic><topic>permutation tests</topic><topic>Permutations</topic><topic>Principal components analysis</topic><topic>Projection</topic><topic>Proteomics</topic><topic>Subspaces</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zwanenburg, Gooitzen</creatorcontrib><creatorcontrib>Hoefsloot, Huub C.J.</creatorcontrib><creatorcontrib>Westerhuis, Johan A.</creatorcontrib><creatorcontrib>Jansen, Jeroen J.</creatorcontrib><creatorcontrib>Smilde, Age K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zwanenburg, Gooitzen</au><au>Hoefsloot, Huub C.J.</au><au>Westerhuis, Johan A.</au><au>Jansen, Jeroen J.</au><au>Smilde, Age K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANOVA-principal component analysis and ANOVA-simultaneous component analysis: a comparison</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2011-10</date><risdate>2011</risdate><volume>25</volume><issue>10</issue><spage>561</spage><epage>567</epage><pages>561-567</pages><issn>0886-9383</issn><issn>1099-128X</issn><eissn>1099-128X</eissn><coden>JOCHEU</coden><abstract>ANOVA–simultaneous component analysis (ASCA) is a recently developed tool to analyze multivariate data. In this paper, we enhance the explorative capability of ASCA by introducing a projection of the observations on the principal component subspace to visualize the variation among the measurements. We compare the significance of experimental effects for ASCA and ANOVA–principal component analysis (PCA), a similar tool to explore multivariate data, by using permutation tests. Furthermore, we quantify the quality of the loadings estimate obtained with ASCA and compare this with the loadings estimate obtained with ANOVA–PCA. Copyright © 2011 John Wiley &amp; Sons, Ltd. This work presents an enhancement of ANOVA‐simultaneous component analysis by projecting the observations onto the principal component subspace, thus allowing the visualization of the variation of the measurements. Furthermore, using a synthetic data set, a comparison is made between the significance of experimental effects and the quality of estimated loadings for ANOVA‐simultaneous component analysis and ANOVA‐principal component analysis.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/cem.1400</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2011-10, Vol.25 (10), p.561-567
issn 0886-9383
1099-128X
1099-128X
language eng
recordid cdi_proquest_miscellaneous_1031290380
source Wiley Online Library All Journals
subjects ANOVA-PCA
ASCA
Chemistry
Chemometrics
Comparative analysis
Data processing
Estimates
Exact sciences and technology
General and physical chemistry
General. Nomenclature, chemical documentation, computer chemistry
Measurement
metabolomics
multivariate data analysis
permutation tests
Permutations
Principal components analysis
Projection
Proteomics
Subspaces
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Variance analysis
title ANOVA-principal component analysis and ANOVA-simultaneous component analysis: a comparison
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANOVA-principal%20component%20analysis%20and%20ANOVA-simultaneous%20component%20analysis:%20a%20comparison&rft.jtitle=Journal%20of%20chemometrics&rft.au=Zwanenburg,%20Gooitzen&rft.date=2011-10&rft.volume=25&rft.issue=10&rft.spage=561&rft.epage=567&rft.pages=561-567&rft.issn=0886-9383&rft.eissn=1099-128X&rft.coden=JOCHEU&rft_id=info:doi/10.1002/cem.1400&rft_dat=%3Cproquest_cross%3E2524184171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907080082&rft_id=info:pmid/&rfr_iscdi=true