In Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb

The α–β phase transformation behavior of Zr‐2.5Nb (in mass%) has been characterized in real time during an in situ neutron diffraction experiment. The Zr‐2.5Nb material in the current study consists, at room temperature, of α‐Zr phase (hcp) and two β phases (bcc), a Nb rich β‐Nb phase and retained,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced engineering materials 2011-09, Vol.13 (9), p.882-886
Hauptverfasser: Yan, Kun, Carr, Dave G., Kabra, Saurabh, Reid, Mark, Studer, Andrew, Harrison, Robert P., Dippenaar, Rian, Liss, Klaus-Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 886
container_issue 9
container_start_page 882
container_title Advanced engineering materials
container_volume 13
creator Yan, Kun
Carr, Dave G.
Kabra, Saurabh
Reid, Mark
Studer, Andrew
Harrison, Robert P.
Dippenaar, Rian
Liss, Klaus-Dieter
description The α–β phase transformation behavior of Zr‐2.5Nb (in mass%) has been characterized in real time during an in situ neutron diffraction experiment. The Zr‐2.5Nb material in the current study consists, at room temperature, of α‐Zr phase (hcp) and two β phases (bcc), a Nb rich β‐Nb phase and retained, Zr rich, β‐Zr(Nb) phase. It is suggested that this is related to a quench off the equilibrium solubility of Nb atoms in the Zr bcc unit cells. Vegard's law combined with thermal expansion is applied to calculate the composition of the β‐phase, which is compared with the phase diagram, revealing the system's kinetic behavior for approaching equilibrium. In situ neutron diffraction has been used to characterize the phase transformation process of the nuclear structural material Zr‐2.5Nb (mass%) while subjected to heating and cooling cycles. The shift of diffraction peaks, as shown in the image, has been evaluated by Vegard's law to track the change of Nb concentrations in the β‐Zr(Nb) phase, which reveals the system kinetics for approaching equilibrium.
doi_str_mv 10.1002/adem.201000350
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031289771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031289771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4660-98a378f327e9268e994a8e53a93215777d42f90c535236cf7607b1ab6d5e5d93</originalsourceid><addsrcrecordid>eNqFkM1PwjAYxhejiYhePe_oZbMfa7seEQFRQBNIMFyasnVa3Qe2nYp_vcMZ4s3T-yTv7_ccHs87hyCEAKBLmaoiRKDJABNw4HUgQSxANIoPmxzhOICU0GPvxNoXACAEEHc8MS79uXa133-WRiZOGf0lna5Kv8r8iXROJ8qfO1MnrjbKH7xXef3zTmujyyf_4Vla5S-MLG1WmWKvrkyAQjJbn3pHmcytOvu9XW8xHCz6N8HkfjTu9yZBElEKAh5LzOIMI6Y4orHiPJKxIlhyjCBhjKURyjhICCYI0yRjFLA1lGuaEkVSjrveRVu7MdVbrawThbaJynNZqqq2AgIMUcwZgw0atmhiKmuNysTG6EKabQOJ3ZBiN6TYD9kIvBU-dK62_9Cidz2Y_nWD1tXWqc-9K82roAwzIpazkbgb3k4fo6uVWOJv0VyFkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031289771</pqid></control><display><type>article</type><title>In Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb</title><source>Wiley Online Library All Journals</source><creator>Yan, Kun ; Carr, Dave G. ; Kabra, Saurabh ; Reid, Mark ; Studer, Andrew ; Harrison, Robert P. ; Dippenaar, Rian ; Liss, Klaus-Dieter</creator><creatorcontrib>Yan, Kun ; Carr, Dave G. ; Kabra, Saurabh ; Reid, Mark ; Studer, Andrew ; Harrison, Robert P. ; Dippenaar, Rian ; Liss, Klaus-Dieter</creatorcontrib><description>The α–β phase transformation behavior of Zr‐2.5Nb (in mass%) has been characterized in real time during an in situ neutron diffraction experiment. The Zr‐2.5Nb material in the current study consists, at room temperature, of α‐Zr phase (hcp) and two β phases (bcc), a Nb rich β‐Nb phase and retained, Zr rich, β‐Zr(Nb) phase. It is suggested that this is related to a quench off the equilibrium solubility of Nb atoms in the Zr bcc unit cells. Vegard's law combined with thermal expansion is applied to calculate the composition of the β‐phase, which is compared with the phase diagram, revealing the system's kinetic behavior for approaching equilibrium. In situ neutron diffraction has been used to characterize the phase transformation process of the nuclear structural material Zr‐2.5Nb (mass%) while subjected to heating and cooling cycles. The shift of diffraction peaks, as shown in the image, has been evaluated by Vegard's law to track the change of Nb concentrations in the β‐Zr(Nb) phase, which reveals the system kinetics for approaching equilibrium.</description><identifier>ISSN: 1438-1656</identifier><identifier>ISSN: 1527-2648</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.201000350</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Body centered cubic lattice ; Close packed lattices ; Evolution ; Neutron diffraction ; Niobium ; Phase diagrams ; Phase transformations ; Zirconium</subject><ispartof>Advanced engineering materials, 2011-09, Vol.13 (9), p.882-886</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4660-98a378f327e9268e994a8e53a93215777d42f90c535236cf7607b1ab6d5e5d93</citedby><cites>FETCH-LOGICAL-c4660-98a378f327e9268e994a8e53a93215777d42f90c535236cf7607b1ab6d5e5d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.201000350$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.201000350$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yan, Kun</creatorcontrib><creatorcontrib>Carr, Dave G.</creatorcontrib><creatorcontrib>Kabra, Saurabh</creatorcontrib><creatorcontrib>Reid, Mark</creatorcontrib><creatorcontrib>Studer, Andrew</creatorcontrib><creatorcontrib>Harrison, Robert P.</creatorcontrib><creatorcontrib>Dippenaar, Rian</creatorcontrib><creatorcontrib>Liss, Klaus-Dieter</creatorcontrib><title>In Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb</title><title>Advanced engineering materials</title><addtitle>Adv. Eng. Mater</addtitle><description>The α–β phase transformation behavior of Zr‐2.5Nb (in mass%) has been characterized in real time during an in situ neutron diffraction experiment. The Zr‐2.5Nb material in the current study consists, at room temperature, of α‐Zr phase (hcp) and two β phases (bcc), a Nb rich β‐Nb phase and retained, Zr rich, β‐Zr(Nb) phase. It is suggested that this is related to a quench off the equilibrium solubility of Nb atoms in the Zr bcc unit cells. Vegard's law combined with thermal expansion is applied to calculate the composition of the β‐phase, which is compared with the phase diagram, revealing the system's kinetic behavior for approaching equilibrium. In situ neutron diffraction has been used to characterize the phase transformation process of the nuclear structural material Zr‐2.5Nb (mass%) while subjected to heating and cooling cycles. The shift of diffraction peaks, as shown in the image, has been evaluated by Vegard's law to track the change of Nb concentrations in the β‐Zr(Nb) phase, which reveals the system kinetics for approaching equilibrium.</description><subject>Body centered cubic lattice</subject><subject>Close packed lattices</subject><subject>Evolution</subject><subject>Neutron diffraction</subject><subject>Niobium</subject><subject>Phase diagrams</subject><subject>Phase transformations</subject><subject>Zirconium</subject><issn>1438-1656</issn><issn>1527-2648</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PwjAYxhejiYhePe_oZbMfa7seEQFRQBNIMFyasnVa3Qe2nYp_vcMZ4s3T-yTv7_ccHs87hyCEAKBLmaoiRKDJABNw4HUgQSxANIoPmxzhOICU0GPvxNoXACAEEHc8MS79uXa133-WRiZOGf0lna5Kv8r8iXROJ8qfO1MnrjbKH7xXef3zTmujyyf_4Vla5S-MLG1WmWKvrkyAQjJbn3pHmcytOvu9XW8xHCz6N8HkfjTu9yZBElEKAh5LzOIMI6Y4orHiPJKxIlhyjCBhjKURyjhICCYI0yRjFLA1lGuaEkVSjrveRVu7MdVbrawThbaJynNZqqq2AgIMUcwZgw0atmhiKmuNysTG6EKabQOJ3ZBiN6TYD9kIvBU-dK62_9Cidz2Y_nWD1tXWqc-9K82roAwzIpazkbgb3k4fo6uVWOJv0VyFkQ</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Yan, Kun</creator><creator>Carr, Dave G.</creator><creator>Kabra, Saurabh</creator><creator>Reid, Mark</creator><creator>Studer, Andrew</creator><creator>Harrison, Robert P.</creator><creator>Dippenaar, Rian</creator><creator>Liss, Klaus-Dieter</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201109</creationdate><title>In Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb</title><author>Yan, Kun ; Carr, Dave G. ; Kabra, Saurabh ; Reid, Mark ; Studer, Andrew ; Harrison, Robert P. ; Dippenaar, Rian ; Liss, Klaus-Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4660-98a378f327e9268e994a8e53a93215777d42f90c535236cf7607b1ab6d5e5d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Body centered cubic lattice</topic><topic>Close packed lattices</topic><topic>Evolution</topic><topic>Neutron diffraction</topic><topic>Niobium</topic><topic>Phase diagrams</topic><topic>Phase transformations</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Kun</creatorcontrib><creatorcontrib>Carr, Dave G.</creatorcontrib><creatorcontrib>Kabra, Saurabh</creatorcontrib><creatorcontrib>Reid, Mark</creatorcontrib><creatorcontrib>Studer, Andrew</creatorcontrib><creatorcontrib>Harrison, Robert P.</creatorcontrib><creatorcontrib>Dippenaar, Rian</creatorcontrib><creatorcontrib>Liss, Klaus-Dieter</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Kun</au><au>Carr, Dave G.</au><au>Kabra, Saurabh</au><au>Reid, Mark</au><au>Studer, Andrew</au><au>Harrison, Robert P.</au><au>Dippenaar, Rian</au><au>Liss, Klaus-Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb</atitle><jtitle>Advanced engineering materials</jtitle><addtitle>Adv. Eng. Mater</addtitle><date>2011-09</date><risdate>2011</risdate><volume>13</volume><issue>9</issue><spage>882</spage><epage>886</epage><pages>882-886</pages><issn>1438-1656</issn><issn>1527-2648</issn><eissn>1527-2648</eissn><abstract>The α–β phase transformation behavior of Zr‐2.5Nb (in mass%) has been characterized in real time during an in situ neutron diffraction experiment. The Zr‐2.5Nb material in the current study consists, at room temperature, of α‐Zr phase (hcp) and two β phases (bcc), a Nb rich β‐Nb phase and retained, Zr rich, β‐Zr(Nb) phase. It is suggested that this is related to a quench off the equilibrium solubility of Nb atoms in the Zr bcc unit cells. Vegard's law combined with thermal expansion is applied to calculate the composition of the β‐phase, which is compared with the phase diagram, revealing the system's kinetic behavior for approaching equilibrium. In situ neutron diffraction has been used to characterize the phase transformation process of the nuclear structural material Zr‐2.5Nb (mass%) while subjected to heating and cooling cycles. The shift of diffraction peaks, as shown in the image, has been evaluated by Vegard's law to track the change of Nb concentrations in the β‐Zr(Nb) phase, which reveals the system kinetics for approaching equilibrium.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adem.201000350</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2011-09, Vol.13 (9), p.882-886
issn 1438-1656
1527-2648
1527-2648
language eng
recordid cdi_proquest_miscellaneous_1031289771
source Wiley Online Library All Journals
subjects Body centered cubic lattice
Close packed lattices
Evolution
Neutron diffraction
Niobium
Phase diagrams
Phase transformations
Zirconium
title In Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Characterization%20of%20Lattice%20Structure%20Evolution%20during%20Phase%20Transformation%20of%20Zr-2.5Nb&rft.jtitle=Advanced%20engineering%20materials&rft.au=Yan,%20Kun&rft.date=2011-09&rft.volume=13&rft.issue=9&rft.spage=882&rft.epage=886&rft.pages=882-886&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.201000350&rft_dat=%3Cproquest_cross%3E1031289771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031289771&rft_id=info:pmid/&rfr_iscdi=true