In Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb
The α–β phase transformation behavior of Zr‐2.5Nb (in mass%) has been characterized in real time during an in situ neutron diffraction experiment. The Zr‐2.5Nb material in the current study consists, at room temperature, of α‐Zr phase (hcp) and two β phases (bcc), a Nb rich β‐Nb phase and retained,...
Gespeichert in:
Veröffentlicht in: | Advanced engineering materials 2011-09, Vol.13 (9), p.882-886 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 886 |
---|---|
container_issue | 9 |
container_start_page | 882 |
container_title | Advanced engineering materials |
container_volume | 13 |
creator | Yan, Kun Carr, Dave G. Kabra, Saurabh Reid, Mark Studer, Andrew Harrison, Robert P. Dippenaar, Rian Liss, Klaus-Dieter |
description | The α–β phase transformation behavior of Zr‐2.5Nb (in mass%) has been characterized in real time during an in situ neutron diffraction experiment. The Zr‐2.5Nb material in the current study consists, at room temperature, of α‐Zr phase (hcp) and two β phases (bcc), a Nb rich β‐Nb phase and retained, Zr rich, β‐Zr(Nb) phase. It is suggested that this is related to a quench off the equilibrium solubility of Nb atoms in the Zr bcc unit cells. Vegard's law combined with thermal expansion is applied to calculate the composition of the β‐phase, which is compared with the phase diagram, revealing the system's kinetic behavior for approaching equilibrium.
In situ neutron diffraction has been used to characterize the phase transformation process of the nuclear structural material Zr‐2.5Nb (mass%) while subjected to heating and cooling cycles. The shift of diffraction peaks, as shown in the image, has been evaluated by Vegard's law to track the change of Nb concentrations in the β‐Zr(Nb) phase, which reveals the system kinetics for approaching equilibrium. |
doi_str_mv | 10.1002/adem.201000350 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031289771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031289771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4660-98a378f327e9268e994a8e53a93215777d42f90c535236cf7607b1ab6d5e5d93</originalsourceid><addsrcrecordid>eNqFkM1PwjAYxhejiYhePe_oZbMfa7seEQFRQBNIMFyasnVa3Qe2nYp_vcMZ4s3T-yTv7_ccHs87hyCEAKBLmaoiRKDJABNw4HUgQSxANIoPmxzhOICU0GPvxNoXACAEEHc8MS79uXa133-WRiZOGf0lna5Kv8r8iXROJ8qfO1MnrjbKH7xXef3zTmujyyf_4Vla5S-MLG1WmWKvrkyAQjJbn3pHmcytOvu9XW8xHCz6N8HkfjTu9yZBElEKAh5LzOIMI6Y4orHiPJKxIlhyjCBhjKURyjhICCYI0yRjFLA1lGuaEkVSjrveRVu7MdVbrawThbaJynNZqqq2AgIMUcwZgw0atmhiKmuNysTG6EKabQOJ3ZBiN6TYD9kIvBU-dK62_9Cidz2Y_nWD1tXWqc-9K82roAwzIpazkbgb3k4fo6uVWOJv0VyFkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031289771</pqid></control><display><type>article</type><title>In Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb</title><source>Wiley Online Library All Journals</source><creator>Yan, Kun ; Carr, Dave G. ; Kabra, Saurabh ; Reid, Mark ; Studer, Andrew ; Harrison, Robert P. ; Dippenaar, Rian ; Liss, Klaus-Dieter</creator><creatorcontrib>Yan, Kun ; Carr, Dave G. ; Kabra, Saurabh ; Reid, Mark ; Studer, Andrew ; Harrison, Robert P. ; Dippenaar, Rian ; Liss, Klaus-Dieter</creatorcontrib><description>The α–β phase transformation behavior of Zr‐2.5Nb (in mass%) has been characterized in real time during an in situ neutron diffraction experiment. The Zr‐2.5Nb material in the current study consists, at room temperature, of α‐Zr phase (hcp) and two β phases (bcc), a Nb rich β‐Nb phase and retained, Zr rich, β‐Zr(Nb) phase. It is suggested that this is related to a quench off the equilibrium solubility of Nb atoms in the Zr bcc unit cells. Vegard's law combined with thermal expansion is applied to calculate the composition of the β‐phase, which is compared with the phase diagram, revealing the system's kinetic behavior for approaching equilibrium.
In situ neutron diffraction has been used to characterize the phase transformation process of the nuclear structural material Zr‐2.5Nb (mass%) while subjected to heating and cooling cycles. The shift of diffraction peaks, as shown in the image, has been evaluated by Vegard's law to track the change of Nb concentrations in the β‐Zr(Nb) phase, which reveals the system kinetics for approaching equilibrium.</description><identifier>ISSN: 1438-1656</identifier><identifier>ISSN: 1527-2648</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.201000350</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Body centered cubic lattice ; Close packed lattices ; Evolution ; Neutron diffraction ; Niobium ; Phase diagrams ; Phase transformations ; Zirconium</subject><ispartof>Advanced engineering materials, 2011-09, Vol.13 (9), p.882-886</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4660-98a378f327e9268e994a8e53a93215777d42f90c535236cf7607b1ab6d5e5d93</citedby><cites>FETCH-LOGICAL-c4660-98a378f327e9268e994a8e53a93215777d42f90c535236cf7607b1ab6d5e5d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.201000350$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.201000350$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yan, Kun</creatorcontrib><creatorcontrib>Carr, Dave G.</creatorcontrib><creatorcontrib>Kabra, Saurabh</creatorcontrib><creatorcontrib>Reid, Mark</creatorcontrib><creatorcontrib>Studer, Andrew</creatorcontrib><creatorcontrib>Harrison, Robert P.</creatorcontrib><creatorcontrib>Dippenaar, Rian</creatorcontrib><creatorcontrib>Liss, Klaus-Dieter</creatorcontrib><title>In Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb</title><title>Advanced engineering materials</title><addtitle>Adv. Eng. Mater</addtitle><description>The α–β phase transformation behavior of Zr‐2.5Nb (in mass%) has been characterized in real time during an in situ neutron diffraction experiment. The Zr‐2.5Nb material in the current study consists, at room temperature, of α‐Zr phase (hcp) and two β phases (bcc), a Nb rich β‐Nb phase and retained, Zr rich, β‐Zr(Nb) phase. It is suggested that this is related to a quench off the equilibrium solubility of Nb atoms in the Zr bcc unit cells. Vegard's law combined with thermal expansion is applied to calculate the composition of the β‐phase, which is compared with the phase diagram, revealing the system's kinetic behavior for approaching equilibrium.
In situ neutron diffraction has been used to characterize the phase transformation process of the nuclear structural material Zr‐2.5Nb (mass%) while subjected to heating and cooling cycles. The shift of diffraction peaks, as shown in the image, has been evaluated by Vegard's law to track the change of Nb concentrations in the β‐Zr(Nb) phase, which reveals the system kinetics for approaching equilibrium.</description><subject>Body centered cubic lattice</subject><subject>Close packed lattices</subject><subject>Evolution</subject><subject>Neutron diffraction</subject><subject>Niobium</subject><subject>Phase diagrams</subject><subject>Phase transformations</subject><subject>Zirconium</subject><issn>1438-1656</issn><issn>1527-2648</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PwjAYxhejiYhePe_oZbMfa7seEQFRQBNIMFyasnVa3Qe2nYp_vcMZ4s3T-yTv7_ccHs87hyCEAKBLmaoiRKDJABNw4HUgQSxANIoPmxzhOICU0GPvxNoXACAEEHc8MS79uXa133-WRiZOGf0lna5Kv8r8iXROJ8qfO1MnrjbKH7xXef3zTmujyyf_4Vla5S-MLG1WmWKvrkyAQjJbn3pHmcytOvu9XW8xHCz6N8HkfjTu9yZBElEKAh5LzOIMI6Y4orHiPJKxIlhyjCBhjKURyjhICCYI0yRjFLA1lGuaEkVSjrveRVu7MdVbrawThbaJynNZqqq2AgIMUcwZgw0atmhiKmuNysTG6EKabQOJ3ZBiN6TYD9kIvBU-dK62_9Cidz2Y_nWD1tXWqc-9K82roAwzIpazkbgb3k4fo6uVWOJv0VyFkQ</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Yan, Kun</creator><creator>Carr, Dave G.</creator><creator>Kabra, Saurabh</creator><creator>Reid, Mark</creator><creator>Studer, Andrew</creator><creator>Harrison, Robert P.</creator><creator>Dippenaar, Rian</creator><creator>Liss, Klaus-Dieter</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201109</creationdate><title>In Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb</title><author>Yan, Kun ; Carr, Dave G. ; Kabra, Saurabh ; Reid, Mark ; Studer, Andrew ; Harrison, Robert P. ; Dippenaar, Rian ; Liss, Klaus-Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4660-98a378f327e9268e994a8e53a93215777d42f90c535236cf7607b1ab6d5e5d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Body centered cubic lattice</topic><topic>Close packed lattices</topic><topic>Evolution</topic><topic>Neutron diffraction</topic><topic>Niobium</topic><topic>Phase diagrams</topic><topic>Phase transformations</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Kun</creatorcontrib><creatorcontrib>Carr, Dave G.</creatorcontrib><creatorcontrib>Kabra, Saurabh</creatorcontrib><creatorcontrib>Reid, Mark</creatorcontrib><creatorcontrib>Studer, Andrew</creatorcontrib><creatorcontrib>Harrison, Robert P.</creatorcontrib><creatorcontrib>Dippenaar, Rian</creatorcontrib><creatorcontrib>Liss, Klaus-Dieter</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Kun</au><au>Carr, Dave G.</au><au>Kabra, Saurabh</au><au>Reid, Mark</au><au>Studer, Andrew</au><au>Harrison, Robert P.</au><au>Dippenaar, Rian</au><au>Liss, Klaus-Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb</atitle><jtitle>Advanced engineering materials</jtitle><addtitle>Adv. Eng. Mater</addtitle><date>2011-09</date><risdate>2011</risdate><volume>13</volume><issue>9</issue><spage>882</spage><epage>886</epage><pages>882-886</pages><issn>1438-1656</issn><issn>1527-2648</issn><eissn>1527-2648</eissn><abstract>The α–β phase transformation behavior of Zr‐2.5Nb (in mass%) has been characterized in real time during an in situ neutron diffraction experiment. The Zr‐2.5Nb material in the current study consists, at room temperature, of α‐Zr phase (hcp) and two β phases (bcc), a Nb rich β‐Nb phase and retained, Zr rich, β‐Zr(Nb) phase. It is suggested that this is related to a quench off the equilibrium solubility of Nb atoms in the Zr bcc unit cells. Vegard's law combined with thermal expansion is applied to calculate the composition of the β‐phase, which is compared with the phase diagram, revealing the system's kinetic behavior for approaching equilibrium.
In situ neutron diffraction has been used to characterize the phase transformation process of the nuclear structural material Zr‐2.5Nb (mass%) while subjected to heating and cooling cycles. The shift of diffraction peaks, as shown in the image, has been evaluated by Vegard's law to track the change of Nb concentrations in the β‐Zr(Nb) phase, which reveals the system kinetics for approaching equilibrium.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adem.201000350</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-1656 |
ispartof | Advanced engineering materials, 2011-09, Vol.13 (9), p.882-886 |
issn | 1438-1656 1527-2648 1527-2648 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031289771 |
source | Wiley Online Library All Journals |
subjects | Body centered cubic lattice Close packed lattices Evolution Neutron diffraction Niobium Phase diagrams Phase transformations Zirconium |
title | In Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Characterization%20of%20Lattice%20Structure%20Evolution%20during%20Phase%20Transformation%20of%20Zr-2.5Nb&rft.jtitle=Advanced%20engineering%20materials&rft.au=Yan,%20Kun&rft.date=2011-09&rft.volume=13&rft.issue=9&rft.spage=882&rft.epage=886&rft.pages=882-886&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.201000350&rft_dat=%3Cproquest_cross%3E1031289771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031289771&rft_id=info:pmid/&rfr_iscdi=true |