InGaN quantum dot growth in the limits of Stranski-Krastanov and spinodal decomposition

Most commonly used for the self‐assembling of InGaN quantum dots is a Stranski–Krastanov growth scheme. Often neglected is the influence of spinodal decomposition, although it is frequently discussed with quantum well growth. In this publication we will expose the influence of both mechanisms on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica Status Solidi (b) 2011-08, Vol.248 (8), p.1765-1776
Hauptverfasser: Figge, Stephan, Tessarek, Christian, Aschenbrenner, Timo, Hommel, Detlef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1776
container_issue 8
container_start_page 1765
container_title Physica Status Solidi (b)
container_volume 248
creator Figge, Stephan
Tessarek, Christian
Aschenbrenner, Timo
Hommel, Detlef
description Most commonly used for the self‐assembling of InGaN quantum dots is a Stranski–Krastanov growth scheme. Often neglected is the influence of spinodal decomposition, although it is frequently discussed with quantum well growth. In this publication we will expose the influence of both mechanisms on the formation process of quantum dots. This paper gives an insight in the theoretical background of quantum dot formation and covers the growth by molecular beam epitaxy and metal organic vapor phase epitaxy. Stranski–Krastanov like growth has been verified by the surface evolution beyond the critical thickness as seen by atomic force microscopy on uncapped samples. The overgrowth of such samples led to dissolution of the quantum dots. Indium compositions within the miscibility gap below critical thickness yielded spinodal phase separation in meander like structures These structures are in agreement with the theory from Hilliard and Cahn. Based on spinodal decomposition overgrowth schemes have been developed which showed reliable quantum dot emission. Such layers have been implemented into device structures such as LEDs and laser structures.
doi_str_mv 10.1002/pssb.201147165
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031289254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031289254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4945-899c2106728ad97e38e34c9c05c6b3bce6a999e3b1d0fdedf5b43d2b828226e93</originalsourceid><addsrcrecordid>eNqFkD1PAjEAhhujiYiuzh1dDvtxXx2VKBIJmqDBrem1PanctWdbRP69EAxxc3qX53mHB4BLjAYYIXLdhVANCMI4LXCeHYEezghOKMvwMeghWqAEs4KcgrMQPhBCBaa4B-ZjOxJT-LkSNq5aqFyE796t4wIaC-NCw8a0JgboajiLXtiwNMmjFyEK676gsAqGzlinRAOVlq7tXDDROHsOTmrRBH3xu33wen_3MnxIJk-j8fBmksiUpVlSMiYJRnlBSqFYoWmpaSqZRJnMK1pJnQvGmKYVVqhWWtVZlVJFqpKUhOSa0T642v923n2udIi8NUHqphFWu1XgGFFMSkaydIsO9qj0LgSva9550wq_2UJ8V5DvCvJDwa3A9sLaNHrzD82fZ7Pbv26yd02I-vvgCr_keUGLjM-nI47wLM-Ho5S_0R_CPYUm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031289254</pqid></control><display><type>article</type><title>InGaN quantum dot growth in the limits of Stranski-Krastanov and spinodal decomposition</title><source>Wiley Online Library</source><creator>Figge, Stephan ; Tessarek, Christian ; Aschenbrenner, Timo ; Hommel, Detlef</creator><creatorcontrib>Figge, Stephan ; Tessarek, Christian ; Aschenbrenner, Timo ; Hommel, Detlef</creatorcontrib><description>Most commonly used for the self‐assembling of InGaN quantum dots is a Stranski–Krastanov growth scheme. Often neglected is the influence of spinodal decomposition, although it is frequently discussed with quantum well growth. In this publication we will expose the influence of both mechanisms on the formation process of quantum dots. This paper gives an insight in the theoretical background of quantum dot formation and covers the growth by molecular beam epitaxy and metal organic vapor phase epitaxy. Stranski–Krastanov like growth has been verified by the surface evolution beyond the critical thickness as seen by atomic force microscopy on uncapped samples. The overgrowth of such samples led to dissolution of the quantum dots. Indium compositions within the miscibility gap below critical thickness yielded spinodal phase separation in meander like structures These structures are in agreement with the theory from Hilliard and Cahn. Based on spinodal decomposition overgrowth schemes have been developed which showed reliable quantum dot emission. Such layers have been implemented into device structures such as LEDs and laser structures.</description><identifier>ISSN: 0370-1972</identifier><identifier>ISSN: 1521-3951</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201147165</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Atomic structure ; Devices ; Dissolution ; III-V semiconductors ; Indium ; Indium gallium nitrides ; InGaN ; light-emitting devices ; Phase separation ; Quantum dots ; Spinodal decomposition</subject><ispartof>Physica Status Solidi (b), 2011-08, Vol.248 (8), p.1765-1776</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4945-899c2106728ad97e38e34c9c05c6b3bce6a999e3b1d0fdedf5b43d2b828226e93</citedby><cites>FETCH-LOGICAL-c4945-899c2106728ad97e38e34c9c05c6b3bce6a999e3b1d0fdedf5b43d2b828226e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.201147165$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.201147165$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Figge, Stephan</creatorcontrib><creatorcontrib>Tessarek, Christian</creatorcontrib><creatorcontrib>Aschenbrenner, Timo</creatorcontrib><creatorcontrib>Hommel, Detlef</creatorcontrib><title>InGaN quantum dot growth in the limits of Stranski-Krastanov and spinodal decomposition</title><title>Physica Status Solidi (b)</title><addtitle>Phys. Status Solidi B</addtitle><description>Most commonly used for the self‐assembling of InGaN quantum dots is a Stranski–Krastanov growth scheme. Often neglected is the influence of spinodal decomposition, although it is frequently discussed with quantum well growth. In this publication we will expose the influence of both mechanisms on the formation process of quantum dots. This paper gives an insight in the theoretical background of quantum dot formation and covers the growth by molecular beam epitaxy and metal organic vapor phase epitaxy. Stranski–Krastanov like growth has been verified by the surface evolution beyond the critical thickness as seen by atomic force microscopy on uncapped samples. The overgrowth of such samples led to dissolution of the quantum dots. Indium compositions within the miscibility gap below critical thickness yielded spinodal phase separation in meander like structures These structures are in agreement with the theory from Hilliard and Cahn. Based on spinodal decomposition overgrowth schemes have been developed which showed reliable quantum dot emission. Such layers have been implemented into device structures such as LEDs and laser structures.</description><subject>Atomic structure</subject><subject>Devices</subject><subject>Dissolution</subject><subject>III-V semiconductors</subject><subject>Indium</subject><subject>Indium gallium nitrides</subject><subject>InGaN</subject><subject>light-emitting devices</subject><subject>Phase separation</subject><subject>Quantum dots</subject><subject>Spinodal decomposition</subject><issn>0370-1972</issn><issn>1521-3951</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PAjEAhhujiYiuzh1dDvtxXx2VKBIJmqDBrem1PanctWdbRP69EAxxc3qX53mHB4BLjAYYIXLdhVANCMI4LXCeHYEezghOKMvwMeghWqAEs4KcgrMQPhBCBaa4B-ZjOxJT-LkSNq5aqFyE796t4wIaC-NCw8a0JgboajiLXtiwNMmjFyEK676gsAqGzlinRAOVlq7tXDDROHsOTmrRBH3xu33wen_3MnxIJk-j8fBmksiUpVlSMiYJRnlBSqFYoWmpaSqZRJnMK1pJnQvGmKYVVqhWWtVZlVJFqpKUhOSa0T642v923n2udIi8NUHqphFWu1XgGFFMSkaydIsO9qj0LgSva9550wq_2UJ8V5DvCvJDwa3A9sLaNHrzD82fZ7Pbv26yd02I-vvgCr_keUGLjM-nI47wLM-Ho5S_0R_CPYUm</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Figge, Stephan</creator><creator>Tessarek, Christian</creator><creator>Aschenbrenner, Timo</creator><creator>Hommel, Detlef</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201108</creationdate><title>InGaN quantum dot growth in the limits of Stranski-Krastanov and spinodal decomposition</title><author>Figge, Stephan ; Tessarek, Christian ; Aschenbrenner, Timo ; Hommel, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4945-899c2106728ad97e38e34c9c05c6b3bce6a999e3b1d0fdedf5b43d2b828226e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic structure</topic><topic>Devices</topic><topic>Dissolution</topic><topic>III-V semiconductors</topic><topic>Indium</topic><topic>Indium gallium nitrides</topic><topic>InGaN</topic><topic>light-emitting devices</topic><topic>Phase separation</topic><topic>Quantum dots</topic><topic>Spinodal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Figge, Stephan</creatorcontrib><creatorcontrib>Tessarek, Christian</creatorcontrib><creatorcontrib>Aschenbrenner, Timo</creatorcontrib><creatorcontrib>Hommel, Detlef</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Figge, Stephan</au><au>Tessarek, Christian</au><au>Aschenbrenner, Timo</au><au>Hommel, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InGaN quantum dot growth in the limits of Stranski-Krastanov and spinodal decomposition</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>Phys. Status Solidi B</addtitle><date>2011-08</date><risdate>2011</risdate><volume>248</volume><issue>8</issue><spage>1765</spage><epage>1776</epage><pages>1765-1776</pages><issn>0370-1972</issn><issn>1521-3951</issn><eissn>1521-3951</eissn><abstract>Most commonly used for the self‐assembling of InGaN quantum dots is a Stranski–Krastanov growth scheme. Often neglected is the influence of spinodal decomposition, although it is frequently discussed with quantum well growth. In this publication we will expose the influence of both mechanisms on the formation process of quantum dots. This paper gives an insight in the theoretical background of quantum dot formation and covers the growth by molecular beam epitaxy and metal organic vapor phase epitaxy. Stranski–Krastanov like growth has been verified by the surface evolution beyond the critical thickness as seen by atomic force microscopy on uncapped samples. The overgrowth of such samples led to dissolution of the quantum dots. Indium compositions within the miscibility gap below critical thickness yielded spinodal phase separation in meander like structures These structures are in agreement with the theory from Hilliard and Cahn. Based on spinodal decomposition overgrowth schemes have been developed which showed reliable quantum dot emission. Such layers have been implemented into device structures such as LEDs and laser structures.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.201147165</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof Physica Status Solidi (b), 2011-08, Vol.248 (8), p.1765-1776
issn 0370-1972
1521-3951
1521-3951
language eng
recordid cdi_proquest_miscellaneous_1031289254
source Wiley Online Library
subjects Atomic structure
Devices
Dissolution
III-V semiconductors
Indium
Indium gallium nitrides
InGaN
light-emitting devices
Phase separation
Quantum dots
Spinodal decomposition
title InGaN quantum dot growth in the limits of Stranski-Krastanov and spinodal decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InGaN%20quantum%20dot%20growth%20in%20the%20limits%20of%20Stranski-Krastanov%20and%20spinodal%20decomposition&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Figge,%20Stephan&rft.date=2011-08&rft.volume=248&rft.issue=8&rft.spage=1765&rft.epage=1776&rft.pages=1765-1776&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.201147165&rft_dat=%3Cproquest_cross%3E1031289254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031289254&rft_id=info:pmid/&rfr_iscdi=true