Nuclear magnetic resonance and magnetization study of surfactant-coated epsilon-Co nanoparticles
A combination of 59Co spin‐echo nuclear magnetic resonance (NMR) and dc magnetization measurements have been carried out on two samples of surfactant‐coated Co nanoparticles in disordered assemblies; 6.5 nm diameter ε‐Co and 12 nm diameter hcp‐Co. The ε‐Co nanoparticles exhibit superparamagnetic beh...
Gespeichert in:
Veröffentlicht in: | Physica Status Solidi (b) 2011-03, Vol.248 (3), p.741-747 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 747 |
---|---|
container_issue | 3 |
container_start_page | 741 |
container_title | Physica Status Solidi (b) |
container_volume | 248 |
creator | Hines, William Budnick, Joseph Perry, David Majetich, Sara Booth, Ryan Sachan, Madhur |
description | A combination of 59Co spin‐echo nuclear magnetic resonance (NMR) and dc magnetization measurements have been carried out on two samples of surfactant‐coated Co nanoparticles in disordered assemblies; 6.5 nm diameter ε‐Co and 12 nm diameter hcp‐Co. The ε‐Co nanoparticles exhibit superparamagnetic behavior with a blocking temperature TB = 70 K, while the hcp‐Co nanoparticles remain ferromagnetic up to room temperature. In addition, the initial susceptibility for the ε‐Co nanoparticles can be described by the Curie–Weiss law with a negative Θ = −158 K. The NMR signal from the hcp‐Co sample is strong at 77 K with no applied magnetic field; the spectra are straightforward and similar to that for bulk hcp Co. However, the NMR signal from the ε‐Co sample is not detectable at 77 K, even with fields up to 7.5 kOe. A NMR signal appears at 4.2 K; the echo amplitude increases dramatically with applied field. The spectra, which must be corrected for T2 effects, are quite broad and characteristic of the small particle size. Due to the broadening, there were no observable spectral features which could be assigned to the two Co sites in crystalline ε‐Co. The results are discussed in the light of interparticle interactions which reduce the initial susceptibility and lead to negative Θ‐values. Estimates are given for the magnetic dipolar and magnetocrystalline anisotropy energies of the particles in both samples. |
doi_str_mv | 10.1002/pssb.201046164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031288851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031288851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3904-892d264b9c04f4e286afc009c21b2a5b10a8c66ef6bec1bab6c44b3576d37d443</originalsourceid><addsrcrecordid>eNqFkM2L1EAQRxtRcFy9es5F8JKx-iPd6aMOugrLKqxfeGkrnYpEM-lsV4KOf71ZZh28eWoo3nsNPyEeS9hKAPVsYm62CiQYK625IzayUrLUvpJ3xQa0g1J6p-6LB8zfAcBJLTfi6-USB8Jc7PHbSHMfi0ycRhwjFTi2f8-_ce7TWPC8tIcidQUvucM44ziXMeFMbUET90May10qVjtNmNfYQPxQ3OtwYHp0-56JD69evt-9Li_enr_ZPb8oo_ZgytqrVlnT-AimM6Rqi10E8FHJRmHVSMA6WkudbSjKBhsbjWl05WyrXWuMPhNPj90pp-uFeA77niMNA46UFg4StFR1XVdyRbdHNObEnKkLU-73mA8rFG6mDDdThtOUq_Dkto0ccejyOk_PJ0tpbzw4vXL-yP3sBzr8pxreXV29-PeP8uj2PNOvk4v5R7BOuyp8ujwPX7wD_bmy4aP-A2ARlgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031288851</pqid></control><display><type>article</type><title>Nuclear magnetic resonance and magnetization study of surfactant-coated epsilon-Co nanoparticles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hines, William ; Budnick, Joseph ; Perry, David ; Majetich, Sara ; Booth, Ryan ; Sachan, Madhur</creator><creatorcontrib>Hines, William ; Budnick, Joseph ; Perry, David ; Majetich, Sara ; Booth, Ryan ; Sachan, Madhur</creatorcontrib><description>A combination of 59Co spin‐echo nuclear magnetic resonance (NMR) and dc magnetization measurements have been carried out on two samples of surfactant‐coated Co nanoparticles in disordered assemblies; 6.5 nm diameter ε‐Co and 12 nm diameter hcp‐Co. The ε‐Co nanoparticles exhibit superparamagnetic behavior with a blocking temperature TB = 70 K, while the hcp‐Co nanoparticles remain ferromagnetic up to room temperature. In addition, the initial susceptibility for the ε‐Co nanoparticles can be described by the Curie–Weiss law with a negative Θ = −158 K. The NMR signal from the hcp‐Co sample is strong at 77 K with no applied magnetic field; the spectra are straightforward and similar to that for bulk hcp Co. However, the NMR signal from the ε‐Co sample is not detectable at 77 K, even with fields up to 7.5 kOe. A NMR signal appears at 4.2 K; the echo amplitude increases dramatically with applied field. The spectra, which must be corrected for T2 effects, are quite broad and characteristic of the small particle size. Due to the broadening, there were no observable spectral features which could be assigned to the two Co sites in crystalline ε‐Co. The results are discussed in the light of interparticle interactions which reduce the initial susceptibility and lead to negative Θ‐values. Estimates are given for the magnetic dipolar and magnetocrystalline anisotropy energies of the particles in both samples.</description><identifier>ISSN: 0370-1972</identifier><identifier>ISSN: 1521-3951</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201046164</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Anisotropy ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Diamagnetism, paramagnetism and superparamagnetism ; Direct current ; Exact sciences and technology ; Ferromagnetism ; Magnetic permeability ; Magnetic properties and materials ; Magnetic properties of nanostructures ; Magnetization ; Nanoparticles ; Nuclear magnetic resonance ; Physics ; Spectra ; surfactants</subject><ispartof>Physica Status Solidi (b), 2011-03, Vol.248 (3), p.741-747</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3904-892d264b9c04f4e286afc009c21b2a5b10a8c66ef6bec1bab6c44b3576d37d443</citedby><cites>FETCH-LOGICAL-c3904-892d264b9c04f4e286afc009c21b2a5b10a8c66ef6bec1bab6c44b3576d37d443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.201046164$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.201046164$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27913,27914,45563,45564</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23949073$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hines, William</creatorcontrib><creatorcontrib>Budnick, Joseph</creatorcontrib><creatorcontrib>Perry, David</creatorcontrib><creatorcontrib>Majetich, Sara</creatorcontrib><creatorcontrib>Booth, Ryan</creatorcontrib><creatorcontrib>Sachan, Madhur</creatorcontrib><title>Nuclear magnetic resonance and magnetization study of surfactant-coated epsilon-Co nanoparticles</title><title>Physica Status Solidi (b)</title><addtitle>Phys. Status Solidi B</addtitle><description>A combination of 59Co spin‐echo nuclear magnetic resonance (NMR) and dc magnetization measurements have been carried out on two samples of surfactant‐coated Co nanoparticles in disordered assemblies; 6.5 nm diameter ε‐Co and 12 nm diameter hcp‐Co. The ε‐Co nanoparticles exhibit superparamagnetic behavior with a blocking temperature TB = 70 K, while the hcp‐Co nanoparticles remain ferromagnetic up to room temperature. In addition, the initial susceptibility for the ε‐Co nanoparticles can be described by the Curie–Weiss law with a negative Θ = −158 K. The NMR signal from the hcp‐Co sample is strong at 77 K with no applied magnetic field; the spectra are straightforward and similar to that for bulk hcp Co. However, the NMR signal from the ε‐Co sample is not detectable at 77 K, even with fields up to 7.5 kOe. A NMR signal appears at 4.2 K; the echo amplitude increases dramatically with applied field. The spectra, which must be corrected for T2 effects, are quite broad and characteristic of the small particle size. Due to the broadening, there were no observable spectral features which could be assigned to the two Co sites in crystalline ε‐Co. The results are discussed in the light of interparticle interactions which reduce the initial susceptibility and lead to negative Θ‐values. Estimates are given for the magnetic dipolar and magnetocrystalline anisotropy energies of the particles in both samples.</description><subject>Anisotropy</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Diamagnetism, paramagnetism and superparamagnetism</subject><subject>Direct current</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetism</subject><subject>Magnetic permeability</subject><subject>Magnetic properties and materials</subject><subject>Magnetic properties of nanostructures</subject><subject>Magnetization</subject><subject>Nanoparticles</subject><subject>Nuclear magnetic resonance</subject><subject>Physics</subject><subject>Spectra</subject><subject>surfactants</subject><issn>0370-1972</issn><issn>1521-3951</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM2L1EAQRxtRcFy9es5F8JKx-iPd6aMOugrLKqxfeGkrnYpEM-lsV4KOf71ZZh28eWoo3nsNPyEeS9hKAPVsYm62CiQYK625IzayUrLUvpJ3xQa0g1J6p-6LB8zfAcBJLTfi6-USB8Jc7PHbSHMfi0ycRhwjFTi2f8-_ce7TWPC8tIcidQUvucM44ziXMeFMbUET90May10qVjtNmNfYQPxQ3OtwYHp0-56JD69evt-9Li_enr_ZPb8oo_ZgytqrVlnT-AimM6Rqi10E8FHJRmHVSMA6WkudbSjKBhsbjWl05WyrXWuMPhNPj90pp-uFeA77niMNA46UFg4StFR1XVdyRbdHNObEnKkLU-73mA8rFG6mDDdThtOUq_Dkto0ccejyOk_PJ0tpbzw4vXL-yP3sBzr8pxreXV29-PeP8uj2PNOvk4v5R7BOuyp8ujwPX7wD_bmy4aP-A2ARlgg</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Hines, William</creator><creator>Budnick, Joseph</creator><creator>Perry, David</creator><creator>Majetich, Sara</creator><creator>Booth, Ryan</creator><creator>Sachan, Madhur</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201103</creationdate><title>Nuclear magnetic resonance and magnetization study of surfactant-coated epsilon-Co nanoparticles</title><author>Hines, William ; Budnick, Joseph ; Perry, David ; Majetich, Sara ; Booth, Ryan ; Sachan, Madhur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3904-892d264b9c04f4e286afc009c21b2a5b10a8c66ef6bec1bab6c44b3576d37d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Diamagnetism, paramagnetism and superparamagnetism</topic><topic>Direct current</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetism</topic><topic>Magnetic permeability</topic><topic>Magnetic properties and materials</topic><topic>Magnetic properties of nanostructures</topic><topic>Magnetization</topic><topic>Nanoparticles</topic><topic>Nuclear magnetic resonance</topic><topic>Physics</topic><topic>Spectra</topic><topic>surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hines, William</creatorcontrib><creatorcontrib>Budnick, Joseph</creatorcontrib><creatorcontrib>Perry, David</creatorcontrib><creatorcontrib>Majetich, Sara</creatorcontrib><creatorcontrib>Booth, Ryan</creatorcontrib><creatorcontrib>Sachan, Madhur</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hines, William</au><au>Budnick, Joseph</au><au>Perry, David</au><au>Majetich, Sara</au><au>Booth, Ryan</au><au>Sachan, Madhur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear magnetic resonance and magnetization study of surfactant-coated epsilon-Co nanoparticles</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>Phys. Status Solidi B</addtitle><date>2011-03</date><risdate>2011</risdate><volume>248</volume><issue>3</issue><spage>741</spage><epage>747</epage><pages>741-747</pages><issn>0370-1972</issn><issn>1521-3951</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>A combination of 59Co spin‐echo nuclear magnetic resonance (NMR) and dc magnetization measurements have been carried out on two samples of surfactant‐coated Co nanoparticles in disordered assemblies; 6.5 nm diameter ε‐Co and 12 nm diameter hcp‐Co. The ε‐Co nanoparticles exhibit superparamagnetic behavior with a blocking temperature TB = 70 K, while the hcp‐Co nanoparticles remain ferromagnetic up to room temperature. In addition, the initial susceptibility for the ε‐Co nanoparticles can be described by the Curie–Weiss law with a negative Θ = −158 K. The NMR signal from the hcp‐Co sample is strong at 77 K with no applied magnetic field; the spectra are straightforward and similar to that for bulk hcp Co. However, the NMR signal from the ε‐Co sample is not detectable at 77 K, even with fields up to 7.5 kOe. A NMR signal appears at 4.2 K; the echo amplitude increases dramatically with applied field. The spectra, which must be corrected for T2 effects, are quite broad and characteristic of the small particle size. Due to the broadening, there were no observable spectral features which could be assigned to the two Co sites in crystalline ε‐Co. The results are discussed in the light of interparticle interactions which reduce the initial susceptibility and lead to negative Θ‐values. Estimates are given for the magnetic dipolar and magnetocrystalline anisotropy energies of the particles in both samples.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.201046164</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | Physica Status Solidi (b), 2011-03, Vol.248 (3), p.741-747 |
issn | 0370-1972 1521-3951 1521-3951 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031288851 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anisotropy Condensed matter: electronic structure, electrical, magnetic, and optical properties Diamagnetism, paramagnetism and superparamagnetism Direct current Exact sciences and technology Ferromagnetism Magnetic permeability Magnetic properties and materials Magnetic properties of nanostructures Magnetization Nanoparticles Nuclear magnetic resonance Physics Spectra surfactants |
title | Nuclear magnetic resonance and magnetization study of surfactant-coated epsilon-Co nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20magnetic%20resonance%20and%20magnetization%20study%20of%20surfactant-coated%20epsilon-Co%20nanoparticles&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Hines,%20William&rft.date=2011-03&rft.volume=248&rft.issue=3&rft.spage=741&rft.epage=747&rft.pages=741-747&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.201046164&rft_dat=%3Cproquest_cross%3E1031288851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031288851&rft_id=info:pmid/&rfr_iscdi=true |