A high-dimensional control chart for profile monitoring

Profile monitoring is an important and rapidly emerging area of statistical process control. In many industries, the quality of processes or products can be characterized by a profile that describes a relationship or a function between a response variable and one or more independent variables. A cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2011-06, Vol.27 (4), p.451-464
Hauptverfasser: Chen, Shuohui, Nembhard, Harriet Black
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 4
container_start_page 451
container_title Quality and reliability engineering international
container_volume 27
creator Chen, Shuohui
Nembhard, Harriet Black
description Profile monitoring is an important and rapidly emerging area of statistical process control. In many industries, the quality of processes or products can be characterized by a profile that describes a relationship or a function between a response variable and one or more independent variables. A change in the profile relationship can indicate a change in the quality characteristic of the process or product and, therefore, needs to be monitored for control purposes. We propose a high‐dimensional (HD) control chart approach for profile monitoring that is based on the adaptive Neyman test statistic for the coefficients of discrete Fourier transform of profiles. We investigate both linear and nonlinear profiles, and we study the robustness of the HD control chart for monitoring profiles with stationary noise. We apply our control chart to monitor the process of nonlinear woodboard vertical density profile data of Walker and Wright (J. Qual. Technol. 2002; 34:118–129) and compare the results with those presented in Williams et al. (Qual. Reliab. Eng. Int. 2007; to appear). Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/qre.1140
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031286874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031286874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3360-2b94b5353a33799517fa08f0aec69f2552608eb60f5412dd44f2ef06472038ca3</originalsourceid><addsrcrecordid>eNp10EtLAzEUBeAgCtYq-BNm6WbqTTJ5LUupVSy-8AFuQjpN2uh00iZTtP_eKRXFhauz-bicexA6xdDDAOR8FW0P4wL2UAeDUjnmVO6jDohC5hKwOERHKb0BtFjJDhL9bO5n83zqF7ZOPtSmyspQNzG0OTexyVyI2TIG5yubLULtmxB9PTtGB85UyZ58Zxc9XQwfB5f5-HZ0NeiP85JSDjmZqGLCKKOGUqEUw8IZkA6MLblyhDHCQdoJB8cKTKbTonDEOuCFIEBlaWgXne3uthVWa5savfCptFVlahvWSWOgmEguRfFLyxhSitbpZfQLEzct0tttdLuN3m7T0nxHP9qvNv86ff8w_Ot9auznjzfxXXNBBdMvNyP9zF6VJPJa39EvoQNynw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031286874</pqid></control><display><type>article</type><title>A high-dimensional control chart for profile monitoring</title><source>Wiley Online Library All Journals</source><creator>Chen, Shuohui ; Nembhard, Harriet Black</creator><creatorcontrib>Chen, Shuohui ; Nembhard, Harriet Black</creatorcontrib><description>Profile monitoring is an important and rapidly emerging area of statistical process control. In many industries, the quality of processes or products can be characterized by a profile that describes a relationship or a function between a response variable and one or more independent variables. A change in the profile relationship can indicate a change in the quality characteristic of the process or product and, therefore, needs to be monitored for control purposes. We propose a high‐dimensional (HD) control chart approach for profile monitoring that is based on the adaptive Neyman test statistic for the coefficients of discrete Fourier transform of profiles. We investigate both linear and nonlinear profiles, and we study the robustness of the HD control chart for monitoring profiles with stationary noise. We apply our control chart to monitor the process of nonlinear woodboard vertical density profile data of Walker and Wright (J. Qual. Technol. 2002; 34:118–129) and compare the results with those presented in Williams et al. (Qual. Reliab. Eng. Int. 2007; to appear). Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0748-8017</identifier><identifier>ISSN: 1099-1638</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.1140</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Adaptive control systems ; adaptive Neyman test statistic ; autoregressive models ; Control charts ; Density ; discrete Fourier transform ; INT ; Monitoring ; multivariate statistical process control ; Nonlinearity ; profile data ; Robustness ; Statistics ; time series models</subject><ispartof>Quality and reliability engineering international, 2011-06, Vol.27 (4), p.451-464</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3360-2b94b5353a33799517fa08f0aec69f2552608eb60f5412dd44f2ef06472038ca3</citedby><cites>FETCH-LOGICAL-c3360-2b94b5353a33799517fa08f0aec69f2552608eb60f5412dd44f2ef06472038ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.1140$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.1140$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chen, Shuohui</creatorcontrib><creatorcontrib>Nembhard, Harriet Black</creatorcontrib><title>A high-dimensional control chart for profile monitoring</title><title>Quality and reliability engineering international</title><addtitle>Qual. Reliab. Engng. Int</addtitle><description>Profile monitoring is an important and rapidly emerging area of statistical process control. In many industries, the quality of processes or products can be characterized by a profile that describes a relationship or a function between a response variable and one or more independent variables. A change in the profile relationship can indicate a change in the quality characteristic of the process or product and, therefore, needs to be monitored for control purposes. We propose a high‐dimensional (HD) control chart approach for profile monitoring that is based on the adaptive Neyman test statistic for the coefficients of discrete Fourier transform of profiles. We investigate both linear and nonlinear profiles, and we study the robustness of the HD control chart for monitoring profiles with stationary noise. We apply our control chart to monitor the process of nonlinear woodboard vertical density profile data of Walker and Wright (J. Qual. Technol. 2002; 34:118–129) and compare the results with those presented in Williams et al. (Qual. Reliab. Eng. Int. 2007; to appear). Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Adaptive control systems</subject><subject>adaptive Neyman test statistic</subject><subject>autoregressive models</subject><subject>Control charts</subject><subject>Density</subject><subject>discrete Fourier transform</subject><subject>INT</subject><subject>Monitoring</subject><subject>multivariate statistical process control</subject><subject>Nonlinearity</subject><subject>profile data</subject><subject>Robustness</subject><subject>Statistics</subject><subject>time series models</subject><issn>0748-8017</issn><issn>1099-1638</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEUBeAgCtYq-BNm6WbqTTJ5LUupVSy-8AFuQjpN2uh00iZTtP_eKRXFhauz-bicexA6xdDDAOR8FW0P4wL2UAeDUjnmVO6jDohC5hKwOERHKb0BtFjJDhL9bO5n83zqF7ZOPtSmyspQNzG0OTexyVyI2TIG5yubLULtmxB9PTtGB85UyZ58Zxc9XQwfB5f5-HZ0NeiP85JSDjmZqGLCKKOGUqEUw8IZkA6MLblyhDHCQdoJB8cKTKbTonDEOuCFIEBlaWgXne3uthVWa5savfCptFVlahvWSWOgmEguRfFLyxhSitbpZfQLEzct0tttdLuN3m7T0nxHP9qvNv86ff8w_Ot9auznjzfxXXNBBdMvNyP9zF6VJPJa39EvoQNynw</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Chen, Shuohui</creator><creator>Nembhard, Harriet Black</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201106</creationdate><title>A high-dimensional control chart for profile monitoring</title><author>Chen, Shuohui ; Nembhard, Harriet Black</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3360-2b94b5353a33799517fa08f0aec69f2552608eb60f5412dd44f2ef06472038ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive control systems</topic><topic>adaptive Neyman test statistic</topic><topic>autoregressive models</topic><topic>Control charts</topic><topic>Density</topic><topic>discrete Fourier transform</topic><topic>INT</topic><topic>Monitoring</topic><topic>multivariate statistical process control</topic><topic>Nonlinearity</topic><topic>profile data</topic><topic>Robustness</topic><topic>Statistics</topic><topic>time series models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shuohui</creatorcontrib><creatorcontrib>Nembhard, Harriet Black</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shuohui</au><au>Nembhard, Harriet Black</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-dimensional control chart for profile monitoring</atitle><jtitle>Quality and reliability engineering international</jtitle><addtitle>Qual. Reliab. Engng. Int</addtitle><date>2011-06</date><risdate>2011</risdate><volume>27</volume><issue>4</issue><spage>451</spage><epage>464</epage><pages>451-464</pages><issn>0748-8017</issn><issn>1099-1638</issn><eissn>1099-1638</eissn><abstract>Profile monitoring is an important and rapidly emerging area of statistical process control. In many industries, the quality of processes or products can be characterized by a profile that describes a relationship or a function between a response variable and one or more independent variables. A change in the profile relationship can indicate a change in the quality characteristic of the process or product and, therefore, needs to be monitored for control purposes. We propose a high‐dimensional (HD) control chart approach for profile monitoring that is based on the adaptive Neyman test statistic for the coefficients of discrete Fourier transform of profiles. We investigate both linear and nonlinear profiles, and we study the robustness of the HD control chart for monitoring profiles with stationary noise. We apply our control chart to monitor the process of nonlinear woodboard vertical density profile data of Walker and Wright (J. Qual. Technol. 2002; 34:118–129) and compare the results with those presented in Williams et al. (Qual. Reliab. Eng. Int. 2007; to appear). Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/qre.1140</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2011-06, Vol.27 (4), p.451-464
issn 0748-8017
1099-1638
1099-1638
language eng
recordid cdi_proquest_miscellaneous_1031286874
source Wiley Online Library All Journals
subjects Adaptive control systems
adaptive Neyman test statistic
autoregressive models
Control charts
Density
discrete Fourier transform
INT
Monitoring
multivariate statistical process control
Nonlinearity
profile data
Robustness
Statistics
time series models
title A high-dimensional control chart for profile monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-dimensional%20control%20chart%20for%20profile%20monitoring&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Chen,%20Shuohui&rft.date=2011-06&rft.volume=27&rft.issue=4&rft.spage=451&rft.epage=464&rft.pages=451-464&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.1140&rft_dat=%3Cproquest_cross%3E1031286874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031286874&rft_id=info:pmid/&rfr_iscdi=true