Mitochondrial ROMK channel is a molecular component of mitoK(ATP)

Activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) has been implicated in the mechanism of cardiac ischemic preconditioning, yet its molecular composition is unknown. To use an unbiased proteomic analysis of the mitochondrial inner membrane to identify the mitochondrial K(+...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2012-08, Vol.111 (4), p.446-454
Hauptverfasser: Foster, D Brian, Ho, Alice S, Rucker, Jasma, Garlid, Anders O, Chen, Ling, Sidor, Agnieszka, Garlid, Keith D, O'Rourke, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454
container_issue 4
container_start_page 446
container_title Circulation research
container_volume 111
creator Foster, D Brian
Ho, Alice S
Rucker, Jasma
Garlid, Anders O
Chen, Ling
Sidor, Agnieszka
Garlid, Keith D
O'Rourke, Brian
description Activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) has been implicated in the mechanism of cardiac ischemic preconditioning, yet its molecular composition is unknown. To use an unbiased proteomic analysis of the mitochondrial inner membrane to identify the mitochondrial K(+) channel underlying mitoK(ATP). Mass spectrometric analysis was used to identify KCNJ1(ROMK) in purified bovine heart mitochondrial inner membrane and ROMK mRNA was confirmed to be present in neonatal rat ventricular myocytes and adult hearts. ROMK2, a short form of the channel, is shown to contain an N-terminal mitochondrial targeting signal, and a full-length epitope-tagged ROMK2 colocalizes with mitochondrial ATP synthase β. The high-affinity ROMK toxin, tertiapin Q, inhibits mitoK(ATP) activity in isolated mitochondria and in digitonin-permeabilized cells. Moreover, short hairpin RNA-mediated knockdown of ROMK inhibits the ATP-sensitive, diazoxide-activated component of mitochondrial thallium uptake. Finally, the heart-derived cell line, H9C2, is protected from cell death stimuli by stable ROMK2 overexpression, whereas knockdown of the native ROMK exacerbates cell death. The findings support ROMK as the pore-forming subunit of the cytoprotective mitoK(ATP) channel.
doi_str_mv 10.1161/CIRCRESAHA.112.266445
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031161808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031161808</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141t-15f43c80acd4412b9adaac34554858797d0263108e4dc522ccf13df4a74beb0c3</originalsourceid><addsrcrecordid>eNo1kM9LwzAcxYMgbk7_BCXHeejMNz_a7FjKdGMbkzrPJU1SVkmb2rQH_3snztPjwec9eA-hByALgBies02e5av3dJ2ePV3QOOZcXKEpCMojLhKYoNsQPgkBzujyBk0olQAiJlOU7uvB65NvTV8rh_PDfov1SbWtdbgOWOHGO6tHp3qsfdP51rYD9hVuzrHtPD2-Pd2h60q5YO8vOkMfL6tjto52h9dNlu6iDjgMEYiKMy2J0oZzoOVSGaU040JwKWSyTAyhMQMiLTdaUKp1BcxUXCW8tCXRbIbmf71d779GG4aiqYO2zqnW-jEUQNjvGZLIM_p4Qceysabo-rpR_XfxP5v9AF6vV70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031161808</pqid></control><display><type>article</type><title>Mitochondrial ROMK channel is a molecular component of mitoK(ATP)</title><source>Journals@Ovid Ovid Autoload</source><source>MEDLINE</source><source>American Heart Association Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Foster, D Brian ; Ho, Alice S ; Rucker, Jasma ; Garlid, Anders O ; Chen, Ling ; Sidor, Agnieszka ; Garlid, Keith D ; O'Rourke, Brian</creator><creatorcontrib>Foster, D Brian ; Ho, Alice S ; Rucker, Jasma ; Garlid, Anders O ; Chen, Ling ; Sidor, Agnieszka ; Garlid, Keith D ; O'Rourke, Brian</creatorcontrib><description>Activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) has been implicated in the mechanism of cardiac ischemic preconditioning, yet its molecular composition is unknown. To use an unbiased proteomic analysis of the mitochondrial inner membrane to identify the mitochondrial K(+) channel underlying mitoK(ATP). Mass spectrometric analysis was used to identify KCNJ1(ROMK) in purified bovine heart mitochondrial inner membrane and ROMK mRNA was confirmed to be present in neonatal rat ventricular myocytes and adult hearts. ROMK2, a short form of the channel, is shown to contain an N-terminal mitochondrial targeting signal, and a full-length epitope-tagged ROMK2 colocalizes with mitochondrial ATP synthase β. The high-affinity ROMK toxin, tertiapin Q, inhibits mitoK(ATP) activity in isolated mitochondria and in digitonin-permeabilized cells. Moreover, short hairpin RNA-mediated knockdown of ROMK inhibits the ATP-sensitive, diazoxide-activated component of mitochondrial thallium uptake. Finally, the heart-derived cell line, H9C2, is protected from cell death stimuli by stable ROMK2 overexpression, whereas knockdown of the native ROMK exacerbates cell death. The findings support ROMK as the pore-forming subunit of the cytoprotective mitoK(ATP) channel.</description><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.112.266445</identifier><identifier>PMID: 22811560</identifier><language>eng</language><publisher>United States</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Animals, Newborn ; Apoptosis ; Bee Venoms - pharmacology ; Cattle ; CHO Cells ; Cricetinae ; Cricetulus ; Cytoprotection ; Diazoxide - pharmacology ; Gene Expression Regulation ; Humans ; Mass Spectrometry ; Mitochondria, Heart - drug effects ; Mitochondria, Heart - metabolism ; Mitochondria, Heart - pathology ; Mitochondrial Membranes - drug effects ; Mitochondrial Membranes - metabolism ; Mitochondrial Proton-Translocating ATPases - metabolism ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - pathology ; Necrosis ; Potassium Channel Blockers - pharmacology ; Potassium Channels - drug effects ; Potassium Channels - genetics ; Potassium Channels - metabolism ; Potassium Channels, Inwardly Rectifying - drug effects ; Potassium Channels, Inwardly Rectifying - genetics ; Potassium Channels, Inwardly Rectifying - metabolism ; Proteomics - methods ; Rats ; RNA Interference ; RNA, Messenger - metabolism ; Thallium - metabolism ; Time Factors ; Transfection</subject><ispartof>Circulation research, 2012-08, Vol.111 (4), p.446-454</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22811560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foster, D Brian</creatorcontrib><creatorcontrib>Ho, Alice S</creatorcontrib><creatorcontrib>Rucker, Jasma</creatorcontrib><creatorcontrib>Garlid, Anders O</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Sidor, Agnieszka</creatorcontrib><creatorcontrib>Garlid, Keith D</creatorcontrib><creatorcontrib>O'Rourke, Brian</creatorcontrib><title>Mitochondrial ROMK channel is a molecular component of mitoK(ATP)</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) has been implicated in the mechanism of cardiac ischemic preconditioning, yet its molecular composition is unknown. To use an unbiased proteomic analysis of the mitochondrial inner membrane to identify the mitochondrial K(+) channel underlying mitoK(ATP). Mass spectrometric analysis was used to identify KCNJ1(ROMK) in purified bovine heart mitochondrial inner membrane and ROMK mRNA was confirmed to be present in neonatal rat ventricular myocytes and adult hearts. ROMK2, a short form of the channel, is shown to contain an N-terminal mitochondrial targeting signal, and a full-length epitope-tagged ROMK2 colocalizes with mitochondrial ATP synthase β. The high-affinity ROMK toxin, tertiapin Q, inhibits mitoK(ATP) activity in isolated mitochondria and in digitonin-permeabilized cells. Moreover, short hairpin RNA-mediated knockdown of ROMK inhibits the ATP-sensitive, diazoxide-activated component of mitochondrial thallium uptake. Finally, the heart-derived cell line, H9C2, is protected from cell death stimuli by stable ROMK2 overexpression, whereas knockdown of the native ROMK exacerbates cell death. The findings support ROMK as the pore-forming subunit of the cytoprotective mitoK(ATP) channel.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Apoptosis</subject><subject>Bee Venoms - pharmacology</subject><subject>Cattle</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Cytoprotection</subject><subject>Diazoxide - pharmacology</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Mass Spectrometry</subject><subject>Mitochondria, Heart - drug effects</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondria, Heart - pathology</subject><subject>Mitochondrial Membranes - drug effects</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>Mitochondrial Proton-Translocating ATPases - metabolism</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Necrosis</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Potassium Channels - drug effects</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium Channels, Inwardly Rectifying - drug effects</subject><subject>Potassium Channels, Inwardly Rectifying - genetics</subject><subject>Potassium Channels, Inwardly Rectifying - metabolism</subject><subject>Proteomics - methods</subject><subject>Rats</subject><subject>RNA Interference</subject><subject>RNA, Messenger - metabolism</subject><subject>Thallium - metabolism</subject><subject>Time Factors</subject><subject>Transfection</subject><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kM9LwzAcxYMgbk7_BCXHeejMNz_a7FjKdGMbkzrPJU1SVkmb2rQH_3snztPjwec9eA-hByALgBies02e5av3dJ2ePV3QOOZcXKEpCMojLhKYoNsQPgkBzujyBk0olQAiJlOU7uvB65NvTV8rh_PDfov1SbWtdbgOWOHGO6tHp3qsfdP51rYD9hVuzrHtPD2-Pd2h60q5YO8vOkMfL6tjto52h9dNlu6iDjgMEYiKMy2J0oZzoOVSGaU040JwKWSyTAyhMQMiLTdaUKp1BcxUXCW8tCXRbIbmf71d779GG4aiqYO2zqnW-jEUQNjvGZLIM_p4Qceysabo-rpR_XfxP5v9AF6vV70</recordid><startdate>20120803</startdate><enddate>20120803</enddate><creator>Foster, D Brian</creator><creator>Ho, Alice S</creator><creator>Rucker, Jasma</creator><creator>Garlid, Anders O</creator><creator>Chen, Ling</creator><creator>Sidor, Agnieszka</creator><creator>Garlid, Keith D</creator><creator>O'Rourke, Brian</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20120803</creationdate><title>Mitochondrial ROMK channel is a molecular component of mitoK(ATP)</title><author>Foster, D Brian ; Ho, Alice S ; Rucker, Jasma ; Garlid, Anders O ; Chen, Ling ; Sidor, Agnieszka ; Garlid, Keith D ; O'Rourke, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141t-15f43c80acd4412b9adaac34554858797d0263108e4dc522ccf13df4a74beb0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Apoptosis</topic><topic>Bee Venoms - pharmacology</topic><topic>Cattle</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Cytoprotection</topic><topic>Diazoxide - pharmacology</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Mass Spectrometry</topic><topic>Mitochondria, Heart - drug effects</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondria, Heart - pathology</topic><topic>Mitochondrial Membranes - drug effects</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>Mitochondrial Proton-Translocating ATPases - metabolism</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Necrosis</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Potassium Channels - drug effects</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium Channels, Inwardly Rectifying - drug effects</topic><topic>Potassium Channels, Inwardly Rectifying - genetics</topic><topic>Potassium Channels, Inwardly Rectifying - metabolism</topic><topic>Proteomics - methods</topic><topic>Rats</topic><topic>RNA Interference</topic><topic>RNA, Messenger - metabolism</topic><topic>Thallium - metabolism</topic><topic>Time Factors</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foster, D Brian</creatorcontrib><creatorcontrib>Ho, Alice S</creatorcontrib><creatorcontrib>Rucker, Jasma</creatorcontrib><creatorcontrib>Garlid, Anders O</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Sidor, Agnieszka</creatorcontrib><creatorcontrib>Garlid, Keith D</creatorcontrib><creatorcontrib>O'Rourke, Brian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foster, D Brian</au><au>Ho, Alice S</au><au>Rucker, Jasma</au><au>Garlid, Anders O</au><au>Chen, Ling</au><au>Sidor, Agnieszka</au><au>Garlid, Keith D</au><au>O'Rourke, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial ROMK channel is a molecular component of mitoK(ATP)</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2012-08-03</date><risdate>2012</risdate><volume>111</volume><issue>4</issue><spage>446</spage><epage>454</epage><pages>446-454</pages><eissn>1524-4571</eissn><abstract>Activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) has been implicated in the mechanism of cardiac ischemic preconditioning, yet its molecular composition is unknown. To use an unbiased proteomic analysis of the mitochondrial inner membrane to identify the mitochondrial K(+) channel underlying mitoK(ATP). Mass spectrometric analysis was used to identify KCNJ1(ROMK) in purified bovine heart mitochondrial inner membrane and ROMK mRNA was confirmed to be present in neonatal rat ventricular myocytes and adult hearts. ROMK2, a short form of the channel, is shown to contain an N-terminal mitochondrial targeting signal, and a full-length epitope-tagged ROMK2 colocalizes with mitochondrial ATP synthase β. The high-affinity ROMK toxin, tertiapin Q, inhibits mitoK(ATP) activity in isolated mitochondria and in digitonin-permeabilized cells. Moreover, short hairpin RNA-mediated knockdown of ROMK inhibits the ATP-sensitive, diazoxide-activated component of mitochondrial thallium uptake. Finally, the heart-derived cell line, H9C2, is protected from cell death stimuli by stable ROMK2 overexpression, whereas knockdown of the native ROMK exacerbates cell death. The findings support ROMK as the pore-forming subunit of the cytoprotective mitoK(ATP) channel.</abstract><cop>United States</cop><pmid>22811560</pmid><doi>10.1161/CIRCRESAHA.112.266445</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1524-4571
ispartof Circulation research, 2012-08, Vol.111 (4), p.446-454
issn 1524-4571
language eng
recordid cdi_proquest_miscellaneous_1031161808
source Journals@Ovid Ovid Autoload; MEDLINE; American Heart Association Journals; EZB-FREE-00999 freely available EZB journals
subjects Adenosine Triphosphate - metabolism
Animals
Animals, Newborn
Apoptosis
Bee Venoms - pharmacology
Cattle
CHO Cells
Cricetinae
Cricetulus
Cytoprotection
Diazoxide - pharmacology
Gene Expression Regulation
Humans
Mass Spectrometry
Mitochondria, Heart - drug effects
Mitochondria, Heart - metabolism
Mitochondria, Heart - pathology
Mitochondrial Membranes - drug effects
Mitochondrial Membranes - metabolism
Mitochondrial Proton-Translocating ATPases - metabolism
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - pathology
Necrosis
Potassium Channel Blockers - pharmacology
Potassium Channels - drug effects
Potassium Channels - genetics
Potassium Channels - metabolism
Potassium Channels, Inwardly Rectifying - drug effects
Potassium Channels, Inwardly Rectifying - genetics
Potassium Channels, Inwardly Rectifying - metabolism
Proteomics - methods
Rats
RNA Interference
RNA, Messenger - metabolism
Thallium - metabolism
Time Factors
Transfection
title Mitochondrial ROMK channel is a molecular component of mitoK(ATP)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20ROMK%20channel%20is%20a%20molecular%20component%20of%20mitoK(ATP)&rft.jtitle=Circulation%20research&rft.au=Foster,%20D%20Brian&rft.date=2012-08-03&rft.volume=111&rft.issue=4&rft.spage=446&rft.epage=454&rft.pages=446-454&rft.eissn=1524-4571&rft_id=info:doi/10.1161/CIRCRESAHA.112.266445&rft_dat=%3Cproquest_pubme%3E1031161808%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031161808&rft_id=info:pmid/22811560&rfr_iscdi=true