A new mammography dosimetric phantom

Breast phantoms produced with tissue-equivalent materials are used in an attempt to simulate glandular and adipose tissues, in terms of X-ray attenuation and density. In this work, a set of breast tissue-equivalent phantoms (BTE phantoms) with semicircular shapes of different thicknesses and composi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation protection dosimetry 2012-08, Vol.151 (1), p.196-198
Hauptverfasser: Almeida, C D, Coutinho, C M C, Dantas, B M, Peixoto, J E, Koch, H A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Breast phantoms produced with tissue-equivalent materials are used in an attempt to simulate glandular and adipose tissues, in terms of X-ray attenuation and density. In this work, a set of breast tissue-equivalent phantoms (BTE phantoms) with semicircular shapes of different thicknesses and compositions were produced. Such phantoms may be used in the measurement of the incident air kerma (K(i)) and the mean glandular dose (D(G)) delivered to patients undergoing mammography. To characterise the materials used to produce the phantoms, a series of 17-keV X-ray attenuation coefficient measurements were performed. The carbon-nitrogen-hydrogen elemental composition and the densities of the tissue-equivalent materials were also determined and compared with values available in the literature. Linear attenuation coefficients of 0.724 and 0.923 cm(-1) were determined, respectively, for adipose and glandular tissues. Such values agree with data available in the literature. On the basis of the results obtained in this work, it is suggested that BTE phantoms are used instead of polymethyl methacrylate phantoms to select exposure parameters (kV, mAs and target/filter combination) specific for breast glandularities from 0 to 50 % in the optimisation of doses in mammography.
ISSN:0144-8420
1742-3406
DOI:10.1093/rpd/ncr457