Estimating Country-Level Terrorism Trends Using Group-Based Trajectory Analyses: Latent Class Growth Analysis and General Mixture Modeling

Recent criminological research has used latent class growth analysis (LCGA), a form of group-based trajectory analysis, to identify distinct terrorism trends and areas of high terrorism activity at the country-level. The current study contributes to the literature by assessing the robustness of rece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative criminology 2012-03, Vol.28 (1), p.103-139
Hauptverfasser: Morris, Nancy A., Slocum, Lee Ann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 1
container_start_page 103
container_title Journal of quantitative criminology
container_volume 28
creator Morris, Nancy A.
Slocum, Lee Ann
description Recent criminological research has used latent class growth analysis (LCGA), a form of group-based trajectory analysis, to identify distinct terrorism trends and areas of high terrorism activity at the country-level. The current study contributes to the literature by assessing the robustness of recent findings generated by one type of group-based analysis, LCGA, to changes in measurement and statistical methodology. Using data from the Global Terrorism Database (GTD), we consider the challenges and advantages of applying group-based analysis to macro-level terrorism data. We summarize and classify country-level patterns of domestic and transnational terrorism using two types of group-based analyses, LCGA and an alternative yet similar modeling approach, general mixture modeling (GMM). We evaluate the results from each approach using both substantive and empirical criteria, highlighting the similarities and differences provided by both techniques. We conclude that both group-based models have utility for terrorism research, yet for the purposes of identifying hot spots of terrorist activity, LCGA results provide greater policy utility.
doi_str_mv 10.1007/s10940-011-9158-2
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1030904972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43551924</jstor_id><sourcerecordid>43551924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-a95c4bbe0f125847af3159bf6376d10177400a70bf9a42993b8dcf8fed82db3a3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEEkvpB-CAZHHiYhj_q21uZVW2lbbqZXuOnGRSssomi8eB7lfgU9dRKpA4cJrD_N4bzXtF8U7AJwFgP5MAr4GDENwL47h8UayEsYpb6_3LYgVWO66NcK-LN0R7APDOyVXx-4pSdwipGx7YepyGFE98iz-xZzuMcYwdHdgu4tAQu6cZ2sRxOvKvgbDJi7DHOo3xxC6H0J8I6QvbhoRDYus-EM30r_T9edsRC0PDNjhgDD277R7TFJHdjg322fpt8aoNPeH58zwr7r9d7dbXfHu3uVlfbnmtLCQevKl1VSG0QhqnbWiVML5qL5S9aAQIazVAsFC1PmjpvapcU7euxcbJplJBnRUfF99jHH9MSKk8dFRj34cBx4lKAQo8aG9lRj_8g-7HKeZnqPQyx-uMUBkSC1THkShiWx5jjjSeslM5l1Mu5ZS5nHIup5yN5aKhzA4PGP8a_0_0fhHtKWf-54pWxggvtXoCnQadEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921578513</pqid></control><display><type>article</type><title>Estimating Country-Level Terrorism Trends Using Group-Based Trajectory Analyses: Latent Class Growth Analysis and General Mixture Modeling</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Jstor Complete Legacy</source><source>SpringerLink Journals</source><source>HeinOnline Law Journal Library</source><source>Sociological Abstracts</source><creator>Morris, Nancy A. ; Slocum, Lee Ann</creator><creatorcontrib>Morris, Nancy A. ; Slocum, Lee Ann</creatorcontrib><description>Recent criminological research has used latent class growth analysis (LCGA), a form of group-based trajectory analysis, to identify distinct terrorism trends and areas of high terrorism activity at the country-level. The current study contributes to the literature by assessing the robustness of recent findings generated by one type of group-based analysis, LCGA, to changes in measurement and statistical methodology. Using data from the Global Terrorism Database (GTD), we consider the challenges and advantages of applying group-based analysis to macro-level terrorism data. We summarize and classify country-level patterns of domestic and transnational terrorism using two types of group-based analyses, LCGA and an alternative yet similar modeling approach, general mixture modeling (GMM). We evaluate the results from each approach using both substantive and empirical criteria, highlighting the similarities and differences provided by both techniques. We conclude that both group-based models have utility for terrorism research, yet for the purposes of identifying hot spots of terrorist activity, LCGA results provide greater policy utility.</description><identifier>ISSN: 0748-4518</identifier><identifier>EISSN: 1573-7799</identifier><identifier>DOI: 10.1007/s10940-011-9158-2</identifier><identifier>CODEN: JQCRE6</identifier><language>eng</language><publisher>Boston: Springer Science+Business Media</publisher><subject>Analytical estimating ; Countries ; Criminology ; Criminology and Criminal Justice ; Law and Criminology ; Measurement ; Methodology ; Methodology of the Social Sciences ; Mixtures ; Modeling ; Original Paper ; Parametric models ; Research methods ; Robustness ; Sociology ; Statistical discrepancies ; Statistics ; Terrorism ; Trajectories ; Violent crimes</subject><ispartof>Journal of quantitative criminology, 2012-03, Vol.28 (1), p.103-139</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-a95c4bbe0f125847af3159bf6376d10177400a70bf9a42993b8dcf8fed82db3a3</citedby><cites>FETCH-LOGICAL-c370t-a95c4bbe0f125847af3159bf6376d10177400a70bf9a42993b8dcf8fed82db3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43551924$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43551924$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,12825,27321,27901,27902,30976,30977,33751,41464,42533,51294,57992,58225</link.rule.ids></links><search><creatorcontrib>Morris, Nancy A.</creatorcontrib><creatorcontrib>Slocum, Lee Ann</creatorcontrib><title>Estimating Country-Level Terrorism Trends Using Group-Based Trajectory Analyses: Latent Class Growth Analysis and General Mixture Modeling</title><title>Journal of quantitative criminology</title><addtitle>J Quant Criminol</addtitle><description>Recent criminological research has used latent class growth analysis (LCGA), a form of group-based trajectory analysis, to identify distinct terrorism trends and areas of high terrorism activity at the country-level. The current study contributes to the literature by assessing the robustness of recent findings generated by one type of group-based analysis, LCGA, to changes in measurement and statistical methodology. Using data from the Global Terrorism Database (GTD), we consider the challenges and advantages of applying group-based analysis to macro-level terrorism data. We summarize and classify country-level patterns of domestic and transnational terrorism using two types of group-based analyses, LCGA and an alternative yet similar modeling approach, general mixture modeling (GMM). We evaluate the results from each approach using both substantive and empirical criteria, highlighting the similarities and differences provided by both techniques. We conclude that both group-based models have utility for terrorism research, yet for the purposes of identifying hot spots of terrorist activity, LCGA results provide greater policy utility.</description><subject>Analytical estimating</subject><subject>Countries</subject><subject>Criminology</subject><subject>Criminology and Criminal Justice</subject><subject>Law and Criminology</subject><subject>Measurement</subject><subject>Methodology</subject><subject>Methodology of the Social Sciences</subject><subject>Mixtures</subject><subject>Modeling</subject><subject>Original Paper</subject><subject>Parametric models</subject><subject>Research methods</subject><subject>Robustness</subject><subject>Sociology</subject><subject>Statistical discrepancies</subject><subject>Statistics</subject><subject>Terrorism</subject><subject>Trajectories</subject><subject>Violent crimes</subject><issn>0748-4518</issn><issn>1573-7799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>BENPR</sourceid><sourceid>BHHNA</sourceid><recordid>eNp9kU9v1DAQxSMEEkvpB-CAZHHiYhj_q21uZVW2lbbqZXuOnGRSssomi8eB7lfgU9dRKpA4cJrD_N4bzXtF8U7AJwFgP5MAr4GDENwL47h8UayEsYpb6_3LYgVWO66NcK-LN0R7APDOyVXx-4pSdwipGx7YepyGFE98iz-xZzuMcYwdHdgu4tAQu6cZ2sRxOvKvgbDJi7DHOo3xxC6H0J8I6QvbhoRDYus-EM30r_T9edsRC0PDNjhgDD277R7TFJHdjg322fpt8aoNPeH58zwr7r9d7dbXfHu3uVlfbnmtLCQevKl1VSG0QhqnbWiVML5qL5S9aAQIazVAsFC1PmjpvapcU7euxcbJplJBnRUfF99jHH9MSKk8dFRj34cBx4lKAQo8aG9lRj_8g-7HKeZnqPQyx-uMUBkSC1THkShiWx5jjjSeslM5l1Mu5ZS5nHIup5yN5aKhzA4PGP8a_0_0fhHtKWf-54pWxggvtXoCnQadEA</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Morris, Nancy A.</creator><creator>Slocum, Lee Ann</creator><general>Springer Science+Business Media</general><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QJ</scope><scope>7U4</scope><scope>7XB</scope><scope>88G</scope><scope>8AM</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGRYB</scope><scope>BHHNA</scope><scope>CCPQU</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HEHIP</scope><scope>K7.</scope><scope>M0O</scope><scope>M2M</scope><scope>M2S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>WZK</scope></search><sort><creationdate>20120301</creationdate><title>Estimating Country-Level Terrorism Trends Using Group-Based Trajectory Analyses: Latent Class Growth Analysis and General Mixture Modeling</title><author>Morris, Nancy A. ; Slocum, Lee Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-a95c4bbe0f125847af3159bf6376d10177400a70bf9a42993b8dcf8fed82db3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical estimating</topic><topic>Countries</topic><topic>Criminology</topic><topic>Criminology and Criminal Justice</topic><topic>Law and Criminology</topic><topic>Measurement</topic><topic>Methodology</topic><topic>Methodology of the Social Sciences</topic><topic>Mixtures</topic><topic>Modeling</topic><topic>Original Paper</topic><topic>Parametric models</topic><topic>Research methods</topic><topic>Robustness</topic><topic>Sociology</topic><topic>Statistical discrepancies</topic><topic>Statistics</topic><topic>Terrorism</topic><topic>Trajectories</topic><topic>Violent crimes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Nancy A.</creatorcontrib><creatorcontrib>Slocum, Lee Ann</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Criminal Justice Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Criminology Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest One Community College</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Sociology Collection</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>ProQuest Criminal Justice</collection><collection>ProQuest Psychology</collection><collection>Sociology Database (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Journal of quantitative criminology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Nancy A.</au><au>Slocum, Lee Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Country-Level Terrorism Trends Using Group-Based Trajectory Analyses: Latent Class Growth Analysis and General Mixture Modeling</atitle><jtitle>Journal of quantitative criminology</jtitle><stitle>J Quant Criminol</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>28</volume><issue>1</issue><spage>103</spage><epage>139</epage><pages>103-139</pages><issn>0748-4518</issn><eissn>1573-7799</eissn><coden>JQCRE6</coden><abstract>Recent criminological research has used latent class growth analysis (LCGA), a form of group-based trajectory analysis, to identify distinct terrorism trends and areas of high terrorism activity at the country-level. The current study contributes to the literature by assessing the robustness of recent findings generated by one type of group-based analysis, LCGA, to changes in measurement and statistical methodology. Using data from the Global Terrorism Database (GTD), we consider the challenges and advantages of applying group-based analysis to macro-level terrorism data. We summarize and classify country-level patterns of domestic and transnational terrorism using two types of group-based analyses, LCGA and an alternative yet similar modeling approach, general mixture modeling (GMM). We evaluate the results from each approach using both substantive and empirical criteria, highlighting the similarities and differences provided by both techniques. We conclude that both group-based models have utility for terrorism research, yet for the purposes of identifying hot spots of terrorist activity, LCGA results provide greater policy utility.</abstract><cop>Boston</cop><pub>Springer Science+Business Media</pub><doi>10.1007/s10940-011-9158-2</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-4518
ispartof Journal of quantitative criminology, 2012-03, Vol.28 (1), p.103-139
issn 0748-4518
1573-7799
language eng
recordid cdi_proquest_miscellaneous_1030904972
source Applied Social Sciences Index & Abstracts (ASSIA); Jstor Complete Legacy; SpringerLink Journals; HeinOnline Law Journal Library; Sociological Abstracts
subjects Analytical estimating
Countries
Criminology
Criminology and Criminal Justice
Law and Criminology
Measurement
Methodology
Methodology of the Social Sciences
Mixtures
Modeling
Original Paper
Parametric models
Research methods
Robustness
Sociology
Statistical discrepancies
Statistics
Terrorism
Trajectories
Violent crimes
title Estimating Country-Level Terrorism Trends Using Group-Based Trajectory Analyses: Latent Class Growth Analysis and General Mixture Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Country-Level%20Terrorism%20Trends%20Using%20Group-Based%20Trajectory%20Analyses:%20Latent%20Class%20Growth%20Analysis%20and%20General%20Mixture%20Modeling&rft.jtitle=Journal%20of%20quantitative%20criminology&rft.au=Morris,%20Nancy%20A.&rft.date=2012-03-01&rft.volume=28&rft.issue=1&rft.spage=103&rft.epage=139&rft.pages=103-139&rft.issn=0748-4518&rft.eissn=1573-7799&rft.coden=JQCRE6&rft_id=info:doi/10.1007/s10940-011-9158-2&rft_dat=%3Cjstor_proqu%3E43551924%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921578513&rft_id=info:pmid/&rft_jstor_id=43551924&rfr_iscdi=true